과제정보
I thank you my colleagues researcher of the mechanical Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes, Algeria for their help.
참고문헌
- Barbarosie, C. (2003), "Shape optimization of periodic structures", Comput. Mech., 30(3), 235-240. https://doi.org/10.1007/s00466-002-0382-3.
- Barbarosie, C. and Toader, A.M. (2010), "Shape and topology optimization for periodic problems Part I: The shape and the topological derivative", Struct. Multidisciplin. Optim., 40(1), 381-391. https://doi.org/10.1007/s00158-009-0378-0.
- Barbarosie, C. and Toader, A.M. (2010), "Shape and topology optimization for periodic problems Part II: optimization algorithm and numerical examples", Struct. Multidisciplin. Optim., 40(1), 393-408. https://doi.org/10.1007/s00158-009-0377-1.
- Berthelot, J.M. (2012), Mechanics of Composite Materials and Structures, 5e Edition: Tec & Doc Lavoisier.
- Correa, D.M., Seepersad, C.C. and Haberman, M.R. (2015), "Mechanical design of negative stiffness honeycomb materials", Integrat. Mater., 4, 1-11. https://doi.org/10.1186/s40192-015-0038-8.
- Cui, C., Wang, Z., Zhou, W., Wu, Y. and Wei, W. (2019), "Branch point algorithm for structural irregularity determination of honeycomb", Compos. Part B, 162(1), 323-330. https://doi.org/10.1016/j.compositesb.2018.10.062.
- Engin, M. R. (2005), "Characteristics of innovative 3-D FRP sandwich panels", Ph.D Dissertation, North Carolina State University, Raleigh, North Carolina, U.S.A.
- Erik, C., Mellquist, A. and Waas, M. (2004), "Size effects in the crushing of honeycomb structures", Proceedigns of the 45th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics and Materials Conference, Palm Springs, California, U.S.A., April.
- Gibson, L.J., Ashby, M.F., Zhang, J. and Triantafillou T.C. (1989), "Failure surfaces for cellular materials under multiaxial loads-I. Modelling", Int. J. Mech. Sci., 31(9), 635-663. https://doi.org/10.1016/S0020-7403(89)80001-3.
- Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S. and Tran, P. (2018), "Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs", Compos. Struct., 183, 242-261. https://doi.org/10.1016/j.compstruct.2017.03.018.
- Ju, J., Summers, J.D., Ziegert, J. and Fadel, G. (2012), "Design of honeycombs for modulus and yield strain in shear", J. Eng. Mater. Technol., 134(1), 1-15. https://doi.org/10.1115/1.4004488.
- Li, M., Deng, Z.Q., Guo, H.W., Liu, R.Q. and Ding, B.C. (2014) "Optimizing crashworthiness design of square honeycomb structure", J. Central South Univ., 21(3), 912-919. https://doi.org/10.1007/s11771-014-2018-0.
- Palei, M.I. and Trepelkova, L.I. (1965), "Effect of the shape and size of the cell on the compressive strength of honeycomb cores", Polymer Mech., 1(3), 20-22. https://doi.org/10.1007/BF00858797.
- Paul, R.H. and John, K. (2006), "The mechanics of pyramids", Int. J. Solids Struct., 43(9), 2693-2709. https://doi.org/10.1016/j.ijsolstr.2005.06.103
- Paz, J.J., Diaz, J., Romera, L. and Costas, M. (2015), "Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures", Compos. Struct., 133, 499-507. https://doi.org/10.1016/j.compstruct.2015.07.077.
- Sardar, M. and Lorna, G. (2015), "Effective elastic properties of periodic hexagonal honeycombs", Mech. Mater., 91, 226-240. https://doi.org/10.1016/j.mechmat.2015.07.008.
- Settet, A.T., Nour, A., Zahloul, H. and Naceur, H. (2014), "Evaluation of damage and fracture mechanisms of different characteristic honeycomb structures under thermomechanical loading", Mech. Compos. Mater., 50(5), 903-922. https://doi.org/10.1007/s11029-014-9452-9.
- Tounsi, R., Markiewicz, E., Haugou, G., Chaari, F. and Zouari, B. (2016), "Dynamic behaviour of honeycombs under mixed shear-compression loading: Experiments and analysis of combined effects of loading angle and cells in-plane orientation", Int. J. Solids Struct., 80, 501-511. https://doi.org/10.1016/j.ijsolstr.2015.10.010.
- Wang, B., Ding, Q., Sun, Y., Yu, S., Ren, F., Cao, X. and Du, Y. (2019), "Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic Voronoi substructures", Result. Phys., 12, 1190-1196. https://doi.org/10.1016/j.rinp.2018.12.068.