DOI QR코드

DOI QR Code

Effects of the geometrical parameters of the core on the mechanical behavior of sandwich honeycomb panel

  • Ahmed, Settet T. (Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes) ;
  • Aguib, Salah (Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes) ;
  • Toufik, Djedid (Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes) ;
  • Noureddine, Chikh (Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes) ;
  • Ahmed, Chellil (Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes)
  • 투고 : 2019.03.08
  • 심사 : 2019.10.24
  • 발행 : 2019.12.25

초록

The present work is the study of mechanical behavior due to variation of the geometrical parameters in the core of the sandwich honeycomb panel. This study has allowed us to increase or decrease the strains and stresses of the panel, in changing the angle of alveolus, as explained and described below. In taking into consideration the results obtained previously to improve the mechanical properties and increase the adhesion of different parts of the panel, without changing the adhesive, we have conceived two new models, in increasing the contact surfaces in boundary of each part of the panel and giving a conical hexagonal shape in his corp.

키워드

과제정보

I thank you my colleagues researcher of the mechanical Dynamic Motors and Vibroacoustic Laboratory, M'Hamed Bougara University of Boumerdes, Algeria for their help.

참고문헌

  1. Barbarosie, C. (2003), "Shape optimization of periodic structures", Comput. Mech., 30(3), 235-240. https://doi.org/10.1007/s00466-002-0382-3.
  2. Barbarosie, C. and Toader, A.M. (2010), "Shape and topology optimization for periodic problems Part I: The shape and the topological derivative", Struct. Multidisciplin. Optim., 40(1), 381-391. https://doi.org/10.1007/s00158-009-0378-0.
  3. Barbarosie, C. and Toader, A.M. (2010), "Shape and topology optimization for periodic problems Part II: optimization algorithm and numerical examples", Struct. Multidisciplin. Optim., 40(1), 393-408. https://doi.org/10.1007/s00158-009-0377-1.
  4. Berthelot, J.M. (2012), Mechanics of Composite Materials and Structures, 5e Edition: Tec & Doc Lavoisier.
  5. Correa, D.M., Seepersad, C.C. and Haberman, M.R. (2015), "Mechanical design of negative stiffness honeycomb materials", Integrat. Mater., 4, 1-11. https://doi.org/10.1186/s40192-015-0038-8.
  6. Cui, C., Wang, Z., Zhou, W., Wu, Y. and Wei, W. (2019), "Branch point algorithm for structural irregularity determination of honeycomb", Compos. Part B, 162(1), 323-330. https://doi.org/10.1016/j.compositesb.2018.10.062.
  7. Engin, M. R. (2005), "Characteristics of innovative 3-D FRP sandwich panels", Ph.D Dissertation, North Carolina State University, Raleigh, North Carolina, U.S.A.
  8. Erik, C., Mellquist, A. and Waas, M. (2004), "Size effects in the crushing of honeycomb structures", Proceedigns of the 45th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics and Materials Conference, Palm Springs, California, U.S.A., April.
  9. Gibson, L.J., Ashby, M.F., Zhang, J. and Triantafillou T.C. (1989), "Failure surfaces for cellular materials under multiaxial loads-I. Modelling", Int. J. Mech. Sci., 31(9), 635-663. https://doi.org/10.1016/S0020-7403(89)80001-3.
  10. Imbalzano, G., Linforth, S., Ngo, T.D., Lee, P.V.S. and Tran, P. (2018), "Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs", Compos. Struct., 183, 242-261. https://doi.org/10.1016/j.compstruct.2017.03.018.
  11. Ju, J., Summers, J.D., Ziegert, J. and Fadel, G. (2012), "Design of honeycombs for modulus and yield strain in shear", J. Eng. Mater. Technol., 134(1), 1-15. https://doi.org/10.1115/1.4004488.
  12. Li, M., Deng, Z.Q., Guo, H.W., Liu, R.Q. and Ding, B.C. (2014) "Optimizing crashworthiness design of square honeycomb structure", J. Central South Univ., 21(3), 912-919. https://doi.org/10.1007/s11771-014-2018-0.
  13. Palei, M.I. and Trepelkova, L.I. (1965), "Effect of the shape and size of the cell on the compressive strength of honeycomb cores", Polymer Mech., 1(3), 20-22. https://doi.org/10.1007/BF00858797.
  14. Paul, R.H. and John, K. (2006), "The mechanics of pyramids", Int. J. Solids Struct., 43(9), 2693-2709. https://doi.org/10.1016/j.ijsolstr.2005.06.103
  15. Paz, J.J., Diaz, J., Romera, L. and Costas, M. (2015), "Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures", Compos. Struct., 133, 499-507. https://doi.org/10.1016/j.compstruct.2015.07.077.
  16. Sardar, M. and Lorna, G. (2015), "Effective elastic properties of periodic hexagonal honeycombs", Mech. Mater., 91, 226-240. https://doi.org/10.1016/j.mechmat.2015.07.008.
  17. Settet, A.T., Nour, A., Zahloul, H. and Naceur, H. (2014), "Evaluation of damage and fracture mechanisms of different characteristic honeycomb structures under thermomechanical loading", Mech. Compos. Mater., 50(5), 903-922. https://doi.org/10.1007/s11029-014-9452-9.
  18. Tounsi, R., Markiewicz, E., Haugou, G., Chaari, F. and Zouari, B. (2016), "Dynamic behaviour of honeycombs under mixed shear-compression loading: Experiments and analysis of combined effects of loading angle and cells in-plane orientation", Int. J. Solids Struct., 80, 501-511. https://doi.org/10.1016/j.ijsolstr.2015.10.010.
  19. Wang, B., Ding, Q., Sun, Y., Yu, S., Ren, F., Cao, X. and Du, Y. (2019), "Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic Voronoi substructures", Result. Phys., 12, 1190-1196. https://doi.org/10.1016/j.rinp.2018.12.068.