DOI QR코드

DOI QR Code

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari (Department of Mechanical Engineering, NIT Rourkela) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, NIT Rourkela) ;
  • Sharma, Nitin (School of Mechanical Engineering, KIIT Bhubaneswar)
  • Received : 2019.08.09
  • Accepted : 2019.11.19
  • Published : 2019.12.25

Abstract

The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Keywords

References

  1. Amir, M. and Talha, M. (2019), "Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects", Int. J. Press. Vessel Pip., 172, 28-41. https://doi.org/10.1016/j.ijpvp.2019.03.008
  2. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  3. Arani, A.G. and Kolahchi, R. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  4. Asadi, H., Aghdam, M.M. and Shakeri, M. (2014), "Vibration analysis of axially moving line supported functionally graded plates with temperature-dependent properties", J. Mech. Eng. Sci., 228(6), 953-969. https://doi.org/10.1177/0954406213498033
  5. Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  7. Barati, M.R. and Zenkour, A.M. (2018), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
  8. Belkorissat, I., Sid, M., Houari, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  9. Bohra, P., Sharma, P., Bhandari, M., Bohra, S. and Prakash, V. (2017), "Free vibration response of functionally graded material plate subjected to simply supported and simply supported-clamped boundary conditions", Int. J. Res. Appl. Sci. Eng. Tech., 5(XII), 501-527.
  10. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Tech., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  11. Chi, S.-H. and Chung, Y.-L. (2006), "Mechanical behavior of functionally graded material plates under transverse load - Part I : Analysis", Int. J. Solids Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  12. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley & Sons, Singapore.
  13. Ghannad, M. and Gharooni, H. (2012), "Displacements and stresses in pressurized thick FGM cylinders with varying properties of power function based on HSDT", J. Solid Mech., 4(3), 237-251.
  14. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Comp. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  15. Ghassabi, A.A., Dag, S. and Cigeroglu, E. (2017), "Free vibration analysis of functionally graded rectangular nanoplates considering spatial variation of the nonlocal parameter", Arch. Mech., 69(2), 105-130.
  16. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018). "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano. Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
  17. Han, S.-C., Lomboy, G.R. and Kim, K.-D. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four-node Quasi-Conforming shell element", Int. J. Struct. Stab. Dyn., 8(2), 203-229. https://doi.org/10.1142/s0219455408002624
  18. Hebali, H., Tounsi, A., Sid, M.H.A., Bessaim, A. and Bedia, A.E.A. (2014), "New Quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  19. Huang, C.S., McGee, I.O.G. and Chang, M.J. (2011), "Vibrations of cracked rectangular FGM thick plates", Comp. Struct., 93, 1747-1764. https://doi.org/10.1016/j.compstruct.2011.01.005
  20. Jamaludin, S.N.S., Mustapha, F., Nuruzzaman, D.M. and Basri, S.N. (2013), "A review on the fabrication techniques of functionally graded ceramic-metallic materials in advanced composites", Sci. Res. Essays, 8(21), 828-840. https://doi.org/10.5897/SRE2012.0743
  21. Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019). "Forced vibration analysis of concrete slabs reinforced by agglomerated $SiO_2$ nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263
  22. Jouneghani, Z.F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1-20. https://doi.org/10.3390/app7121252
  23. Kar, V.R. and Panda, S.K. (2016), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102
  24. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation", Comp. Part B, 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028
  25. Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration and buckling of FGM plates using a couple stress-based third-order theory", Comp. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007
  26. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019). "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. with Appl., 78, 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042
  27. Liu, S., Yu, T. and Bui, T.Q. (2017), "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis", Eur. J. Mech. / A Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008
  28. Mashat, D.S., Carrera, E., Zenkour, A.M., Khateeb, S.A.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B, 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
  29. Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  30. Mirzaei, M. and Kiani, Y. (2017), "Nonlinear free vibration of FG-CNT reinforced composite plates", Struct. Eng. Mech., Int. J., 64(3), 381-390. https://doi.org/10.12989/sem.2017.64.3.381
  31. Mohammadi, B. and Ghannadpour, S.A.M. (2011), "Energy approach vibration analysis of nonlocal Timoshenko beam theory", Procedia Eng., 10, 1766-1771. https://doi.org/10.1016/j.proeng.2011.04.294
  32. Ramu, I. and Mohanty, S.C. (2014), "Modal Analysis of Functionally Graded Material Plates Using Finite Element Method". Procedia Mater. Sci., 6, 460-467. https://doi.org/10.1016/j.mspro.2014.07.059
  33. Reddy, J.N. (2004), Mechanics of Laminated Composite - Plates and Shells - Theory and Analysis, (2nd Edition) CRC Press, Boca Raton, FL, USA.
  34. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008
  35. Sheikh, A.H., Asadi, A. and Thomsen, O.T. (2015), "Vibration of thin-walled laminated composite beams having open and closed sections", Compos. Struct., 134, 209-215. https://doi.org/10.1016/j.compstruct.2015.08.025
  36. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  37. Thai, H.T. and Choi, D.-H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Comp. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  38. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods. Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
  39. Vu, T.-V., Nguyen, N.-H., Khosravifard, A., Hematiyan, M.R., Tanaka, S. and Bui, T.Q. (2017), "A simple FSDT-based meshfree method for analysis of functionally graded plates", Eng. Anal. Bound. Elem., 79, 1-12. https://doi.org/10.1016/j.enganabound.2017.03.002
  40. Vu, T.-V., Khosravifard, A., Hematiyan, M.R. and Bui, T.Q. (2019), "Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory", Eur. J. Mech. / A Solids, 74, 160-175. https://doi.org/10.1016/j.euromechsol.2018.11.005
  41. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Tech., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
  42. Wang, Y.Q. and Zu, J.W. (2018), "Vibration characteristics of moving sigmoid functionally graded plates containing porosities". Int. J. Mech. Mater. Des., 14, 473-489. https://doi.org/10.1007/s10999-017-9385-2
  43. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049

Cited by

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
  3. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  4. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215