References
- Amir, M. and Talha, M. (2019), "Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects", Int. J. Press. Vessel Pip., 172, 28-41. https://doi.org/10.1016/j.ijpvp.2019.03.008
-
Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by
$SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140 - Arani, A.G. and Kolahchi, R. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Asadi, H., Aghdam, M.M. and Shakeri, M. (2014), "Vibration analysis of axially moving line supported functionally graded plates with temperature-dependent properties", J. Mech. Eng. Sci., 228(6), 953-969. https://doi.org/10.1177/0954406213498033
- Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Barati, M.R. and Zenkour, A.M. (2018), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
- Belkorissat, I., Sid, M., Houari, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bohra, P., Sharma, P., Bhandari, M., Bohra, S. and Prakash, V. (2017), "Free vibration response of functionally graded material plate subjected to simply supported and simply supported-clamped boundary conditions", Int. J. Res. Appl. Sci. Eng. Tech., 5(XII), 501-527.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Tech., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
- Chi, S.-H. and Chung, Y.-L. (2006), "Mechanical behavior of functionally graded material plates under transverse load - Part I : Analysis", Int. J. Solids Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley & Sons, Singapore.
- Ghannad, M. and Gharooni, H. (2012), "Displacements and stresses in pressurized thick FGM cylinders with varying properties of power function based on HSDT", J. Solid Mech., 4(3), 237-251.
- Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Comp. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
- Ghassabi, A.A., Dag, S. and Cigeroglu, E. (2017), "Free vibration analysis of functionally graded rectangular nanoplates considering spatial variation of the nonlocal parameter", Arch. Mech., 69(2), 105-130.
- Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018). "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano. Res., Int. J., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299
- Han, S.-C., Lomboy, G.R. and Kim, K.-D. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four-node Quasi-Conforming shell element", Int. J. Struct. Stab. Dyn., 8(2), 203-229. https://doi.org/10.1142/s0219455408002624
- Hebali, H., Tounsi, A., Sid, M.H.A., Bessaim, A. and Bedia, A.E.A. (2014), "New Quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Huang, C.S., McGee, I.O.G. and Chang, M.J. (2011), "Vibrations of cracked rectangular FGM thick plates", Comp. Struct., 93, 1747-1764. https://doi.org/10.1016/j.compstruct.2011.01.005
- Jamaludin, S.N.S., Mustapha, F., Nuruzzaman, D.M. and Basri, S.N. (2013), "A review on the fabrication techniques of functionally graded ceramic-metallic materials in advanced composites", Sci. Res. Essays, 8(21), 828-840. https://doi.org/10.5897/SRE2012.0743
-
Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019). "Forced vibration analysis of concrete slabs reinforced by agglomerated
$SiO_2$ nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263 - Jouneghani, Z.F., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2017), "Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory", Appl. Sci., 7(12), 1-20. https://doi.org/10.3390/app7121252
- Kar, V.R. and Panda, S.K. (2016), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation", Comp. Part B, 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration and buckling of FGM plates using a couple stress-based third-order theory", Comp. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007
- Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019). "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. with Appl., 78, 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042
- Liu, S., Yu, T. and Bui, T.Q. (2017), "Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis", Eur. J. Mech. / A Solids, 66, 446-458. https://doi.org/10.1016/j.euromechsol.2017.08.008
- Mashat, D.S., Carrera, E., Zenkour, A.M., Khateeb, S.A.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B, 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
- Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Mirzaei, M. and Kiani, Y. (2017), "Nonlinear free vibration of FG-CNT reinforced composite plates", Struct. Eng. Mech., Int. J., 64(3), 381-390. https://doi.org/10.12989/sem.2017.64.3.381
- Mohammadi, B. and Ghannadpour, S.A.M. (2011), "Energy approach vibration analysis of nonlocal Timoshenko beam theory", Procedia Eng., 10, 1766-1771. https://doi.org/10.1016/j.proeng.2011.04.294
- Ramu, I. and Mohanty, S.C. (2014), "Modal Analysis of Functionally Graded Material Plates Using Finite Element Method". Procedia Mater. Sci., 6, 460-467. https://doi.org/10.1016/j.mspro.2014.07.059
- Reddy, J.N. (2004), Mechanics of Laminated Composite - Plates and Shells - Theory and Analysis, (2nd Edition) CRC Press, Boca Raton, FL, USA.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008
- Sheikh, A.H., Asadi, A. and Thomsen, O.T. (2015), "Vibration of thin-walled laminated composite beams having open and closed sections", Compos. Struct., 134, 209-215. https://doi.org/10.1016/j.compstruct.2015.08.025
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34, 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
- Thai, H.T. and Choi, D.-H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Comp. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods. Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Vu, T.-V., Nguyen, N.-H., Khosravifard, A., Hematiyan, M.R., Tanaka, S. and Bui, T.Q. (2017), "A simple FSDT-based meshfree method for analysis of functionally graded plates", Eng. Anal. Bound. Elem., 79, 1-12. https://doi.org/10.1016/j.enganabound.2017.03.002
- Vu, T.-V., Khosravifard, A., Hematiyan, M.R. and Bui, T.Q. (2019), "Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory", Eur. J. Mech. / A Solids, 74, 160-175. https://doi.org/10.1016/j.euromechsol.2018.11.005
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Tech., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023
- Wang, Y.Q. and Zu, J.W. (2018), "Vibration characteristics of moving sigmoid functionally graded plates containing porosities". Int. J. Mech. Mater. Des., 14, 473-489. https://doi.org/10.1007/s10999-017-9385-2
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
Cited by
- Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.001
- Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
- Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215