과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Guangdong Natural Science Foundation
The authors would like to acknowledge the financial support by the National Natural Science Foundation of China [No. 51878348], and the Guangdong Natural Science Foundation under project [No. 2018A030313752].
참고문헌
- ACI 318-08 (2008), Building code requirements for structural concrete and commentary. American Concrete Institute: Farmington Hills, MI, USA.
- AIJ (2001), Standard for structural calculation of steel reinforced concrete structures, 5th Ed., Architectural Institute of Japan, Tokyo, Japan.
- Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56, 1718-1727. https://doi.org/10.1016/j.engstruct.2013.07.040
- ANSI/AISC 360 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- ASTM C39/C39M (2018), Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, USA.
- ASTM E 8M/E8M (2016), Standard test methods for tension testing of metallic materials, ASTM International, West Conshohocken, PA, USA.
- Choi, E.G., Kim, H.S. and Shin, Y.S. (2012), "Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns", Steel Compos. Struct., Int. J., 13(6), 521-537. https://doi.org/10.12989/scs.2012.13.6.521
- El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009)
- Ellobody, E. and Young, B. (2011), "Numerical simulation of concrete encased steel composite columns", J. Constr. Steel Res., 67, 211-222. https://doi.org/10.1016/j.jcsr.2010.08.003
- EN 1992-1-1 (2004), Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization.
- EN 1993-1-1 (2005), Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization.
- EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization.
- Gao, D.Y., You, P.B., Zhang, L.J. and Yan, H.H. (2018), "Seismic behavior of SFRC shear wall with CFST columns", Steel Compos. Struct., Int. J., 28(5), 527-539. https://doi.org/10.12989/scs.2018.28.5.527
- GB 50010 (2010), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China. [In Chinese]
- GB 50936 (2014), Technical Code for Concrete-filled Steel Tubular Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China. [In Chinese]
- Graybeal, B. and Davis, M. (2008), "Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fibre-reinforced concrete", ACI Mater J., 105(6), 603-609.
- Harajli, M.H. (2010), "Bond behavior in steel fibre-reinforced concrete zones under static and cyclic loading: experimental evaluations and analytical modelling", J. Mater. Civil Eng., 22(7), 674-686. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000067
- Hegger, J. and Doinghaus, P. (2002), "High performance steel and high performance concrete in composite structures", In: J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds), Composite Construction in Steel and Concrete IV, American Society of Civil Engineers, New York, USA.
- Hoffmeister, B., Sedlacek, G., Muller, C. and Kuhn, B. (2002), "High strength materials in composite structures", In: J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds), Composite Construction in Steel and Concrete IV, American Society of Civil Engineers, New York, USA.
- Johnson, R.P. and Anderson, D. (2004), Designers' guide to EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures - Part 1.1: General rules and rules for buildings, Thomas Telford Publishing, London, UK.
- Kara, I.F. and Dundar, C. (2012), "Prediction of deflection of high strength steel fiber reinforced concrete beams and columns", Comput. Concrete, Int. J., 9(2), 133-151. https://doi.org/10.12989/cac.2012.9.2.133
- Kim, C.S. and Hwang, H.J. (2018), "Numerical investigation on load-carrying capacity of high-strength concrete-encased steel angle columns", Int. J. Concr. Struct. Mater., 12(1), 1-17. https://doi.org/10.1186/s40069-018-0238-7
- Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2012), "Eccentric axial load testing for concrete-encased steel columns using 800 MPa steel and 100 MPa concrete", J. Struct. Eng., 138(8), 1019-1031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000533
- Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140(4), 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879
- Lai, B.L., Liew, J.Y.R. and Wang, T.Y. (2019), "Buckling behaviour of high strength concrete encased steel composite columns", J. Constr. Steel Res., 154, 27-42. https://doi.org/10.1016/j.jcsr.2018.11.023
- Liew, J.Y.R. and Xiong, M.X. (2015), Design guide for concrete filled tubular members with high strength materials to Eurocode 4 - An extension of Eurocode 4 Method to C90/105 Concrete and S550 Steel. Research Publishing Services, Singapore.
- Liu, Y., Guo, Z.X., Xu, P.H. and Jia, L.P. (2015), "Experimental study on axial compression behavior of core steel reinforced concrete columns", J. Build. Struct., 36(4), 68-74.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Morino, S. (2002), "Recent developments on concrete-filled steel tube members in Japan", In: J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds), Composite Construction in Steel and Concrete IV, American Society of Civil Engineers, New York, USA.
- Naito, H., Akiyama, M. and Suzuki, M. (2011), "Ductility evaluation of concrete-encased steel bridge piers subjected to lateral cyclic loading", J. Bridge Eng., 16(1), 72-81. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000120
- Pessiki, S. and Pieroni, A. (1997), "Axial load behavior of large-scale spirally-reinforced high-strength concrete columns", ACI Struct. J., 94, 304-314.
- Pons, D., Espinos, A., Albero, V. and Romero M.L. (2018), "Numerical study on axially loaded ultra-high strength concretefilled dual steel columns", Steel Compos. Struct., Int. J., 26(6), 705-717. https://doi.org/10.12989/scs.2018.26.6.705
- Ricles, J.M. and Paboojian, S.D. (1994), "Seismic performance of steel-encased composite columns", J. Struct. Eng., 120(8), 2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474)
- Sharmila, P. and Dhinakaran, G. (2015), "Strength and durability of ultra fine slag based high strength concrete", Struct. Eng. Mech., Int. J., 55(3), 675-686. https://doi.org/10.12989/sem.2015.55.3.675
- Tao, Z., Han, L.H. and Zhuang, J.P. (2007), "Axial loading behavior of CFRP strengthened concrete filled steel tubular stub columns", Adv. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814
- Wakabayashi, M. and Minami, K. (1990), "Application of high strength steel to composite structures", Symposium on Mixed Structures, including New Materials, Brussels. IABSE, Zurich, Switzerland.
- Xiong, M.X. and Liew, J.Y.R. (2015), "Spalling behavior and residual resistance of fibre reinforced ultra-high performance concrete after elevated temperatures", Mater. Construct., 65(320), 1-10. https://doi.org/10.3989/mc.2015.00715
- Xiong, M.X. and Liew, J.Y.R. (2016), "Mechanical behavior of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes", Mater. Des., 104, 414-427. https://doi.org/10.1016/j.matdes.2016.05.050
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017a), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017b), "Behaviour of steel tubular members infilled with ultra high strength concrete", J. Constr. Steel Res., 138, 168-183. https://doi.org/10.1016/j.jcsr.2017.07.001
- Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017c), "Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete", J. Constr. Steel Res., 132, 191-202. https://doi.org/10.1016/j.jcsr.2017.01.017
- Xue, J.Y., Chen, Z.P., Zhao, H.T., Gao, L. and Liu, Z.Q. (2012), "Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns", Steel Compos. Struct., Int. J., 13(5), 473-487. https://doi.org/10.12989/scs.2012.13.5.473
- Yao, D.L., Jia, J.Q., Wu, F. and Yu, F. (2014), "Shear performance of prestressed ultra high strength concrete encased steel beams", Constr. Build. Mater., 52, 194-201. https://doi.org/10.1016/j.conbuildmat.2013.11.006
- Zhu, W.Q., Meng, G.M. and Jia, J.Q. (2014), "Experimental studies on axial load performance of high-strength concrete short columns", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 167(SB9), 509-519. https://doi.org/10.1680/stbu.13.00027
- Zhu, W.Q., Jia, J.Q., Gao, J.C. and Zhang, F.S. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018
- Zhu, W.Q., Jia, J.Q. and Zhang, J.G. (2017), "Experimental research on seismic behavior of steel reinforced high-strength concrete short columns", Steel Compos. Struct., Int. J., 25(5), 603-615. https://doi.org/10.12989/scs.2017.25.5.603
피인용 문헌
- Shear behavior and shear capacity prediction of precast concrete-encased steel beams vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.261
- Behaviour of ultra-high strength concrete encased steel columns subject to ISO-834 fire vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.121