DOI QR코드

DOI QR Code

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature

  • Feng, Liuyang (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore) ;
  • Qian, Xudong (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore)
  • Received : 2019.03.23
  • Accepted : 2019.11.30
  • Published : 2019.12.25

Abstract

This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.

Keywords

Acknowledgement

Supported by : National Research Foundation, Keppel Corporation, National University of Singapore

The authors thank the National Research Foundation, Keppel Corporation and National University of Singapore for supporting this work done in the Keppel-NUS Corporate Laboratory. The conclusions put forward reflect the views of the authors alone, and not necessarily those of the institutions within the Corporate Laboratory. The President Graduate Fellowship to the first author provided by the National University of Singapore, are highly acknowledged.

References

  1. ABAQUS (2014), Abaqus Analysis User's Guide. Version 6.14. Providence, RI, USA. Version 6.14, Dassault Systemes Simulia Corp.
  2. ABS (2014), Fatigue assessment of offshore structures, American Bureau of Shipping.
  3. Aeran, A., Siriwardane, S.C., Mikkelsen, O. and Langen, I. (2017), "A new nonlinear fatigue damage model based only on SN curve parameters", Int. J. Fatigue, 103, 327-341. https://doi.org/10.1016/j.ijfatigue.2017.06.017
  4. Amiri, M. and Khonsari, M. (2010), "Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load", Int. J. Fatigue, 32, 382-389. https://doi.org/10.1016/j.ijfatigue.2009.07.015
  5. Arcari, A., De Vita, R. and Dowling, N.E. (2009), "Mean stress relaxation during cyclic straining of high strength aluminum alloys", Int. J. Fatigue, 31, 1742-1750. https://doi.org/10.1016/j.ijfatigue.2009.01.021
  6. ASTM (2012), E606/E606M-12. Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, USA.
  7. Bonora, N. and Newaz, G. (1998), "Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model", Int. J. Solids Struct., 35, 1881-1894. https://doi.org/10.1016/S0020-7683(97)00139-X
  8. Botshekan, M., Degallaix, S., Desplanques, Y. and Pol, J. (1998), "Tensile and LCF properties of AISI 316LN SS at 300 and 77 K.", Fatigue Fract. Eng. Mater. Struct., 21, 651-660. https://doi.org/10.1046/j.1460-2695.1998.00058.x
  9. Branco, R., Costa, J. and Antunes, F. (2012), "Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel", Theor. Appl. Fract. Mech., 58, 28-34. https://doi.org/10.1016/j.tafmec.2012.02.004
  10. Chaboche, J.-L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  11. Chaboche, J.-L. (1989), "Constitutive equations for cyclic plasticity and cyclic viscoplasticity", Int. J. Plast., 5, 247-302. https://doi.org/10.1016/0749-6419(89)90015-6
  12. Chaboche, J. and Lesne, P. (1988), "A non-linear continuous fatigue damage model", Fatigue Fract. Eng. Mater. Struct., 11, 1-17. https://doi.org/10.1111/j.1460-2695.1988.tb01216.x
  13. Chen, S., Qian, X. and Ahmed, A. (2016), "Cleavage fracture assessment for surface-cracked plate fabricated from high strength steels", Eng. Fract. Mech., 161, 1-20. https://doi.org/10.1016/j.engfracmech.2016.04.039
  14. Darveaux, R. (2002), "Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction", J. Electron. Packag., 124, 147-154. https://doi.org/10.1109/ECTC.2000.853299
  15. Ellyin, F. (1989), Cyclic strain energy density as a criterion for multiaxial fatigue failure, Biaxial and Multiaxial Fatigue, (Edited by M.W. Brown and K.J. Miller), Mechanical Engineering Publications, London, UK, pp. 571-583.
  16. Ertas, A.H. and Yilmaz, A.F. (2014), "Simulation-based fatigue life assessment of a mercantile vessel", Struct. Eng. Mech., Int. J., 50(6), 835-852. https://doi.org/10.12989/sem.2014.50.6.835
  17. Feng, L. and Qian, X. (2017), "A hot-spot energy indicator for welded plate connections under cyclic axial loading and bending", Eng. Struct., 147, 598-612. https://doi.org/10.1016/j.engstruct.2017.06.021
  18. Feng, L. and Qian, X. (2018), "Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios", Mar. Struct., 61, 343-360. https://doi.org/10.1016/j.marstruc.2018.06.011
  19. Frederick, C.O. and Armstrong, P. (1966), A mathematical representation of the multiaxial Bauschinger effect, CEGB Report, RD/B/n731.
  20. Gao, C., Ren, T. and Liu, M. (2019), "Low-cycle fatigue characteristics of Cr18Mn18N0. 6 austenitic steel under strain controlled condition at $100^{\circ}C$", Int. J. Fatigue, 118, 35-43. https://doi.org/10.1016/j.ijfatigue.2018.08.038
  21. Ghazijahani, T.G., Jiaoa, H. and Hollowayb, D. (2015), "Fatigue tests of damaged tubes under flexural loading", Steel Compos. Struct., Int. J., 19(1), 223-236. https://doi.org/10.12989/scs.2015.19.1.223
  22. Groza, M. and Varadi, K. (2017), "Total fatigue life analysis of a nodular cast iron plate specimen with a center notch", Adv. Mech. Eng., 9(12), 1-11. https://doi.org/10.1177/1687814017742546
  23. Guo, P., Qian, L., Meng, J., Zhang, F. and Li, L. (2013), "Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel", Mater. Sci. Engi. A- Struct. Mater., 584, 133-142. https://doi.org/10.1016/j.msea.2013.07.020
  24. Hobbacher, A. (2016), Recommendations for fatigue design of welded joints and components, (2nd Edition), International Institute of Welding, Springer.
  25. Hu, X., Huang, L., Wang, W., Yang, Z., Sha, W., Wang, W., Yan, W. and Shan, Y. (2013), "Low cycle fatigue properties of CLAM steel at room temperature", Fusion. Eng. Des., 88, 3050-3059. https://doi.org/10.1016/j.fusengdes.2013.08.001
  26. Huang, Z., Wang, O., Wagner, D. and Bathias, C. (2014), "Constitutive model coupled with damage for carbon manganese steel in low cycle fatigue", Steel Compos. Struct., Int. J., 17(2), 185-198. https://doi.org/10.12989/scs.2014.17.2.185
  27. Ju, X., Zeng, Z., Zhao, X. and Liu, X. (2018), "Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck", Steel Compos. Struct., Int. J., 28(3), 319-329. https://doi.org/10.12989/scs.2018.28.3.319
  28. Kawasaki, T., Nakanishi, S., Sawaki, Y., Hatanaka, K. and Yokobori, T. (1975), "Fracture toughness and fatigue crack propagation in high strength steel from room temperature to $-180^{\circ}C$", Eng. Fract. Mech., 7(3), 465-472. https://doi.org/10.1016/0013-7944(75)90047-8
  29. Koh, S. and Stephens, R. (1991), "Mean stress effects on low cycle fatigue for a high strength steel", Fatigue Fract. Eng. Mater. Struct., 14, 413-428. https://doi.org/10.1111/j.1460-2695.1991.tb00672.x
  30. Kourousis, K.I. and Dafalias, Y.F. (2013), "Constitutive modeling of Aluminum Alloy 7050 cyclic mean stress relaxation and ratcheting", Mech. Res. Commun., 53, 53-56. https://doi.org/10.1016/j.mechrescom.2013.08.001
  31. Lau, J.H., Pan, S.H. and Chang, C. (2002), "A new thermal-fatigue life prediction model for wafer level chip scale package (WLCSP) solder joints", J. Electron. Packag., 124, 212-220. https://doi.org/10.1115/1.1462625
  32. Lee, C.-H., Van Do, V.N. and Chang, K.-H. (2014), "Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel", Int. J. Plast., 62, 17-33. https://doi.org/10.1016/j.ijplas.2014.06.008
  33. Lefebvre, D. and Ellyin, F. (1984), "Cyclic response and inelastic strain energy in low cycle fatigue", Int. J. Fatigue, 6, 9-15. https://doi.org/10.1016/0142-1123(84)90003-3
  34. Lemaitre, J. (2012), A course on damage mechanics, Springer Science & Business Media.
  35. Lemaitre, J. and Desmorat, R. (2005), Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer Science & Business Media.
  36. Liao, X., Wang, Y., Qian, X. and Shi, Y. (2018), "Fatigue crack propagation for Q345qD bridge steel and its butt welds at low temperatures", Fatigue Fract. Eng. Mater. Struct., 41(3), 675-687. https://doi.org/10.1111/ffe.12727
  37. Lim, C., Choi, W. and Sumner, E.A. (2013), "Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection", Steel Compos. Struct., Int. J., 14(1), 57-71. https://doi.org/10.12989/scs.2013.14.1.057
  38. Liu, Y., Xiong, Z., Feng, Y. and Jiang, L. (2017), "Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation", Steel Compos. Struct., Int. J., 24(4), 455-465. https://doi.org/10.12989/scs.2017.24.4.455
  39. Maachou, S., Boulenouar, A., Benguediab, M., Mazari, M. and Ranganathan, N. (2016), "Plastic energy approach prediction of fatigue crack growth", Struct. Eng. Mech., Int. J., 59(5), 885-899. https://doi.org/10.12989/sem.2016.59.5.885
  40. Maalek, S., Heidary-Torkamani, H., Pirooz, M.D. and Naeeini, S.T.O. (2019), "Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces", Steel Compos. Struct., Int. J., 30(3), 201-215. https://doi.org/10.12989/scs.2019.30.3.201
  41. Macha, E. and Sonsino, C. (1999), "Energy criteria of multiaxial fatigue failure", Fatigue. Fract. Eng. Mater. Struct., 22, 1053-1070. https://doi.org/10.1046/j.1460-2695.1999.00220.x
  42. Malagi, R.R. and Danawade, B.A. (2015), "Fatigue behavior of circular hollow tube and wood filled circular hollow steel tube", Steel. Compos. Struct., Int. J., 19(3), 585-599. https://doi.org/10.12989/scs.2015.19.3.585
  43. Okamura, H., Ohtani, R., Saito, K., Kimura, K., Ishii, R., Fujiyama, K., Hongo, S., Iseki, T. and Uchida, H. (1999), "Basic investigation for life assessment technology of modified 9Cr-1Mo steel", Nucl. Eng. Des., 193, 243-254. https://doi.org/10.1016/S0029-5493(99)00181-8
  44. Paul, S.K., Stanford, N., Taylor, A. and Hilditch, T. (2015), "The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel", Int. J. Fatigue, 80, 341-348. https://doi.org/10.1016/j.ijfatigue.2015.06.003
  45. Perera, R., Gomez, S. and Alarcon, E. (2001), "Seismic assessment of steel structures through a cumulative damage", Steel. Compos. Struct., Int. J., 1(3), 283-294. https://doi.org/10.12989/scs.2001.1.3.283
  46. Roy, S.C., Goyal, S., Sandhya, R. and Ray, S. (2012), "Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response", Nucl. Eng. Des., 253, 219-225. https://doi.org/10.1016/j.nucengdes.2012.08.024
  47. Sakr, M.A., Eladly, M.M., Khalifa, T. and El-Khoriby, S. (2019), "Cyclic behaviour of infilled steel frames with different beam-tocolumn connection types", Steel Compos. Struct., Int. J., 30(5), 443-456. https://doi.org/10.12989/scs.2019.30.5.443
  48. Sarkar, A., Kumawat, B.K. and Chakravartty, J. (2015), "Low cycle fatigue behavior of a ferritic reactor pressure vessel steel", J. Nucl. Mater., 462, 273-279. https://doi.org/10.1016/j.jnucmat.2015.04.015
  49. Shang, D.-G. and Yao, W.-X. (1999), "A nonlinear damage cumulative model for uniaxial fatigue", Int. J. Fatigue, 21, 187-194. https://doi.org/10.1016/S0142-1123(98)00069-3
  50. Shibata, K., Kishimoto, Y., Namura, N. and Fujita, T. (1985), "Cyclic softening and hardening of austenitic steels at low temperatures", Fatigue Low Temperat. https://doi.org/10.1520/STP32745S
  51. Veerababu, J., Goyal, S., Sandhya, R. and Laha, K. (2017), "Low cycle fatigue behaviour of Grade 92 steel weld joints", Int. J. Fatigue, 105, 60-70. https://doi.org/10.1016/j.ijfatigue.2017.08.013
  52. Veritas, D.N. (2010), Fatigue design of offshore steel structures, DNV Recommended Practice DNV-RP-C203.
  53. Walters, C.L., Alvaro, A. and Maljaars, J. (2016), "The effect of low temperatures on the fatigue crack growth of S460 structural steel", Int. J. Fatigue, 82, 110-118. https://doi.org/10.1016/j.ijfatigue.2015.03.007
  54. Wang, M., Shi, Y., Wang, Y., Xiong, J. and Chen, H. (2013), "Degradation and damage behaviors of steel frame welded connections", Steel Compos. Struct., Int. J., 15(4), 357-377. https://doi.org/10.12989/scs.2013.15.4.357
  55. Ye, D. and Wang, Z. (2001), "A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue", Int. J. Fatigue, 23, 679-687. https://doi.org/10.1016/S0142-1123(01)00027-5
  56. Zhang, Z. and Qian, X. (2016), "A local approach to estimate cleavage angles in steel under mixed-mode I and II conditions", Eng. Fract. Mech., 166, 164-181. https://doi.org/10.1016/j.engfracmech.2016.08.024
  57. Zhang, L., Liu, X., Wu, S., Ma, Z. and Fang, H. (2013), "Rapid determination of fatigue life based on temperature evolution", Int. J. Fatigue, 54, 1-6. https://doi.org/10.1016/j.ijfatigue.2013.04.002
  58. Zhao, X., Tian, Y., Jia, L.-J. and Zhang, T. (2018), "Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending", Steel Compos. Struct., Int. J., 26(4), 439-452. https://doi.org/10.12989/scs.2018.26.4.439

Cited by

  1. Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests vol.10, pp.11, 2019, https://doi.org/10.3390/met10111445