DOI QR코드

DOI QR Code

Yellow-colored mats in Jeju Island lava tubes

  • Kim, Jong-Shik (Marine Industry Research Institute for East sea rim) ;
  • Kim, Dae-Shin (World Heritage Office, Jeju Special Self-Governing Provincial Government) ;
  • Lee, Keun Chul (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Yong-Hwan (Marine Industry Research Institute for East sea rim) ;
  • Ahn, Ung-San (World Heritage Office, Jeju Special Self-Governing Provincial Government) ;
  • Lee, Mi-Kyung (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Jung-Sook (Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology)
  • 투고 : 2019.12.09
  • 심사 : 2019.12.30
  • 발행 : 2019.12.30

초록

The Geomunoreum Lava Tube System, declared as a UNESCO World Heritage Site, has a unique natural ecosystem. The information available about this ecosystem, which contains lava caves with secondary carbonate speleothems, is sparse. Hence, extensive research is warranted for establishing a conservation standard. We commenced microbial research on the system and have been studying the microorganisms coating the lava tube wall to acquire fundamental information for understanding the lava cave ecology of Jeju Island. Samples were collected from yellow-colored walls in six caves that are part of the system-the Bengdwi, Utsanjeon, Bukoreum, Manjang, Gimnyeong, and Yongcheon caves. This study focused on yellow walls as it is the most easily distinguished color. According to previous studies, the color of cave walls is attributed to microorganisms or their components. To determine whether the yellow mats from the Jeju lava tube walls are caused by microorganisms, we examined samples at the microscopic scale, by staining mats and analyzing bacterial isolates from glitter particles. As a result, we found that the yellow walls of lava tubes are comprised of microbial mats.

키워드

참고문헌

  1. U. S. Ahn, J. H. Choi, E. Y. Yeo. "Eruption timing of the Geomun Oreum through the comparison of radiocarbon and quartz OSL ages", Journal of the Geological Society of Korea, Vol. 53 pp. 367-376, (2017). https://doi.org/10.14770/jgsk.2017.53.3.367
  2. U. S. Ahn, S. K. Hwang. "Study on source of lava flows forming the Manjangul lava tube", Journal of the Petrological Society of Korea, Vol.18, pp. 237-253, (2009).
  3. U. S. Ahn, S. K. Hwang. "Interpretation of formation and growth processes of Manjang lava tube through detailed surveying with electronic total station", Journal of the Petrological Society of Korea, Vol.44, pp. 657-672, (2008).
  4. K. S. Woo, L. Kim, H. Ji, Y. Jeon, C. G. Ryu, C. Wood. "Geological Heritage Values of the Yongcheon Cave (Lava Tube Cave), Jeju Island, Korea", Geoheritage, Vol.11 pp. 615-628, (2019). https://doi.org/10.1007/s12371-018-0315-y
  5. J. L. Gonzalez-Pimentel, A. Z. Miller, V. Jurado, L.Laiz, M. F. C. Pereira, C. Saiz-Jimenez. "Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria", Scientific Report, Vol.8 pp. 1944, (2018). https://doi.org/10.1038/s41598-018-20393-2
  6. C. Riquelme, F. Rigal, J. J. Hathaway, D. E. Northup, M. N. Spilde, P. A. Borges, R. Gabriel, I. R. Amorim, M. L. Dapkevicius. "Cave microbial community composition in oceanic islands: Disentangling the effect of different colored mats in diversity patterns of Azorean lava caves" FEMS Microbiology Ecology, Vol.91 pp. fiv141, (2015). https://doi.org/10.1093/femsec/fiv141
  7. E. Porca, V. Jurado, D. Zgur-Bertok, C. Saiz-Jimenez, L. Pasic. "Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a commoncore of microorganisms involved in their formation", FEMS Microbiology Ecology, Vol.81, pp. 255-266, (2012). https://doi.org/10.1111/j.1574-6941.2012.01383.x
  8. K. H. Lavoie, A. S. Winter, K. J. H. Read, E. M. Hughes, M. N. Spilde, D. E. Northup. "Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA". PlosOne, Vol.12, pp. e0169339, (2017). https://doi.org/10.1371/journal.pone.0169339
  9. C. Riquelme, J. J. M. Hathaway, M.. E. Dapkevicius, A. Z. Miller, A. Kooser, D., E. Northup, V, Jurado, O. Femandez, C. Saiz-Jimenez, N. Cheeptham, "Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions". Frontiers in Microbiology, Vol.6 pp. 1342, (2015). https://doi.org/10.3389/fmicb.2015.01342
  10. D. E. Northup, L. A. Melim, M. N. Spilde, J. J. M. Hathaway, M.G. Garcia, M. Mova, F.D. Stone, P. J. Boston, M. L. N. E. Dapkevicius, C. Riquelme. "Lava cave microbial communities within mats and secondary mineral deposits: Implications for life detection on other planets", Astrobiology, Vol.11 pp. 601-618, (2011). https://doi.org/10.1089/ast.2010.0562
  11. J. J. M. Hathaway, M. G. Garcia, M.M. Balasch, M. N. Dapkeviclus, I. R. Gabriel, P. A. Borges, D. E. Northup. "Comparison of bacterial diversity in Azorean and Hawai'ian lava cave microbial mats", Geomicrobiology Journal, Vol.31 pp. 205-220, (2014). https://doi.org/10.1080/01490451.2013.777491
  12. Q. Yin, L. Zhang. Z.M. Song, Y. Wu, Z.L. Hu, X.H. Zhang, Y. Zhang, M. Yu, Y. Xul. "Euzebya rosea sp. nov., a rare actinobacterium isolated from the East China Sea and analysis of two genome sequences in the genus Euzebya", International Journal of Systematic and Evolutionary Microbiology, Vol. 68 pp. 2900-2908, (2018). https://doi.org/10.1099/ijsem.0.002917
  13. M. Kurahashi, Y. Eukunaga, Y. Sakiyama, S. Harayama, A. Yokota. "Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov. Euzebyales ord. nov. and Nitriliruptoridae subclassis nov", International Journal of Systematic and Evolutionary Microbiology, Vol.60 pp. 2314-2319, (2010). https://doi.org/10.1099/ijs.0.016543-0
  14. I. M. Kolthoff, E. B. Sandell. E. J. Meehan, S. Bruckensterin. Quantitative Chemical Analysis (Fourth Edition), p. 1200, Macmillan Publishers, (1969).
  15. Saitou N, Nei M. "The neighbor-joining method: A new method for reconstructing phylogenetic trees", Molecular Biology Evolution, Vol.4 pp. 406-425, (1987).
  16. S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura. "MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms", Molecular Biology Evolution, Vol.35 pp. 1547-1549, (2018). https://doi.org/10.1093/molbev/msy096
  17. M. Kimura. "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences", Journal of Molecular Evolution, Vol.16 pp. 111-120, (1980). https://doi.org/10.1007/BF01731581
  18. M. C. Portillo, J. M. Gonzalez, C. Saiz-Jimenez. "Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain", Journal of Applied and Microbiology, Vol.104 pp. 681-691, (2008). https://doi.org/10.1111/j.1365-2672.2007.03594.x
  19. C. Riquelme, M.. E. Dapkevicius, A. Z. Miller, Z. Charlop-Powers, S. Brady,C. Mason, N. Cheeptham. "Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves", Applied Microbiology and Biotechnology, Vol.101 pp. 843-857, (2017). https://doi.org/10.1007/s00253-016-7932-7
  20. S. Cuezva, A. Fernandez-Cortes, E. Porca, L. Pasic, V. Jurado, M. Hernandez -Marine, P. Serrano-Ortiz, B. Hermosin, J. C. Canaveras, S. Sanchez-Moral, C. Saiz-Jimenez. "The biogeochemical role of Actinobacteria in Altamira Cave, Spain", FEMS Microbiology Ecology, Vol.81 pp. 281-290, (2012). https://doi.org/10.1111/j.1574-6941.2012.01391.x