DOI QR코드

DOI QR Code

Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow

  • Hosseini, Mohammad (Department of Mechanical Engineering, Sirjan University of Technology) ;
  • Arani, Ali Ghorbanpour (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan) ;
  • Karamizadeh, Mohammad Reza (Department of Mechanical Engineering, Sirjan University of Technology) ;
  • Afshari, Hassan (Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University) ;
  • Niknejad, Shahriar (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • Received : 2018.04.15
  • Accepted : 2019.09.27
  • Published : 2019.12.25

Abstract

In this paper, a numerical solution is presented for supersonic flutter analysis of cantilever non-symmetric functionally graded (FG) sandwich plates. The plate is considered to be composed of two different functionally graded face sheets and an isotropic homogeneous core made of ceramic. Based on the first order shear deformation theory (FSDT) and linear piston theory, the set of governing equations and boundary conditions are derived. Dimensionless form of the governing equations and boundary conditions are derived and solved numerically using generalized differential quadrature method (GDQM) and critical velocity and flutter frequencies are calculated. For various values of the yaw angle, effect of different parameters like aspect ratio, thickness of the plate, power law indices and thickness of the core on the flutter boundaries are investigated. Numerical examples show that wings and tail fins with larger length and shorter width are more stable in supersonic flights. It is concluded for FG sandwich plates made of Al-Al2O3 that increase in volume fraction of ceramic (Al2O3) increases aeroelastic stability of the plate. Presented study confirms that improvement of aeroelastic behavior and weight of wings and tail fins of aircrafts are not consistent items. It is shown that value of the critical yaw angle depends on aspect ratio of the plate and other parameters including thickness and variation of properties have no considerable effect on it. Results of this paper can be used in design and analysis of wing and tail fin of supersonic airplanes.

Keywords

References

  1. Afshari, H. and Torabi, K. (2017), "A parametric study on flutter analysis of cantilevered trapezoidal FG sandwich plates", Amirkabir J. Sci. Res. Mech. Eng., 1(2), 191-210.
  2. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Review., 49(1), 1-28. https://doi.org/10.1115/1.3101882.
  3. Chowdary, T., Sinha, P. and Parthan, S. (1996), "Finite element flutter analysis of composite skew panels", Comput. Struct., 58(3), 613-620. https://doi.org/10.1016/0045-7949(95)00153-8.
  4. Cunha-Filho, A., De Lima, A., Donadon, M. and Leao, L. (2016), "Flutter suppression of plates using passive constrained viscoelastic layers", Mech. Syst. Signal Pr., 79, 99-111. https://doi.org/10.1016/j.ymssp.2016.02.025.
  5. Du, H., Lim, M. and Lin, R. (1994), "Application of generalized differential quadrature method to structural problems", Int. J. Numer. Method. Eng., 37(11), 1881-1896. https://doi.org/10.1002/nme.1620371107.
  6. Eltaher, M., Alshorbagy, A. and Mahmoud, F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  7. Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2019), "Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow", Int. J. Appl. Mech.. 11(6), 1950052. https://doi.org/10.1142/S1758825119500522.
  8. Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2019), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandwich Struct. Mater., 1099636219830787.
  9. Grover, N., Singh, B. and Maiti, D. (2016), "An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates", Aerospa. Sci. Technol., 52, 41-51. https://doi.org/10.1016/j.ast.2016.02.017.
  10. Haddadpour, H., Mahmoudkhani, S. and Navazi, H. (2008), "Supersonic flutter prediction of functionally graded cylindrical shells", Compos. Struct., 83(4), 391-398. https://doi.org/10.1016/j.compstruct.2007.05.011.
  11. Han, Y., Liu, S. and Cai, C. (2015), "Flutter stability of a longspan suspension bridge during erection", Wind Struct., 21(1), 41-61. https://doi.org/10.12989/was.2015.21.1.041.
  12. Hasheminejad, S.M., Nezami, M. and Aryaee Panah, M. (2013), "Flutter suppression of an elastically supported plate with electro-rheological fluid core under yawed supersonic flows", Int. J. Struct. Stability and Dynamics. 13(1), 1250073. https://doi.org/10.1142/S0219455412500733.
  13. Hatami-Marbini, H. and Rohanifar, M. (2019), "Stiffness of bimodulus hexagonal and diamond honeycombs", J. Mech. Sci. Technol., 33(4), 1703-1709. https://doi.org/10.1007/s12206-019-0322-1.
  14. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  15. Hosseini, M. and Fazelzadeh, S. (2010), "Aerothermoelastic postcritical and vibration analysis of temperature-dependent functionally graded panels", J. Therm. Stresses, 33(12), 1188-1212. https://doi.org/10.1080/01495739.2010.510754.
  16. Hosseini, M., Fazelzadeh, S. and Marzocca, P. (2011), "Chaotic and bifurcation dynamic behavior of functionally graded curved panels under aero-thermal loads", Int. J. Bifurcation Chaos. 21(3), 931-954. https://doi.org/10.1142/S0218127411028738.
  17. Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D: Appl. Phys., 8(16), 1927. https://doi.org/10.1088/0022-3727/8/16/003
  18. Kouchakzadeh, M., Rasekh, M. and Haddadpour, H. (2010), "Panel flutter analysis of general laminated composite plates", Compos. Struct., 92(12), 2906-2915. https://doi.org/10.1016/j.compstruct.2010.05.001.
  19. Kuo, S.Y. (2011), "Flutter of rectangular composite plates with variable fiber pacing", Compos. Struct., 93(10), 2533-2540. https://doi.org/10.1016/j.compstruct.2011.04.015.
  20. Mahmoudkhani, S., Haddadpour, H. and Navazi, H. (2010), "Supersonic flutter prediction of functionally graded conical shells", Compos. Struct., 92(2), 377-386. https://doi.org/10.1016/j.compstruct.2009.08.018.
  21. Meijer, M.C. and Dala, L. (2015), "Zeroth-order flutter prediction for cantilevered plates in supersonic flow", J. Fluids Struct., 57 196-205. https://doi.org/10.1016/j.jfluidstructs.2015.06.018.
  22. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18 31. https://doi.org/10.1115/1.4010217
  23. Navazi, H. and Haddadpour, H. (2011), "Nonlinear aerothermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models", Compos. Struct., 93(10), 2554-2565. https://doi.org/10.1016/j.compstruct.2011.04.018.
  24. Prakash, T. and Ganapathi, M. (2006), "Supersonic flutter characteristics of functionally graded flat panels including thermal effects", Compos. Struct., 72(1), 10-18. https://doi.org/10.1016/j.compstruct.2004.10.007.
  25. Sankar, A., Natarajan, S., Zineb, T.B. and Ganapathi, M. (2015), "Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higherorder structural theory", Compos. Struct., 127, 340-355. https://doi.org/10.1016/j.compstruct.2015.02.047.
  26. Shin, W.H., Oh, I.K., Han, J.H. and Lee, I. (2006), "Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments", J. Sound Vib., 296(1-2), 99-116. https://doi.org/10.1016/j.jsv.2006.01.068.
  27. Singha, M. and Mandal, M. (2008), "Supersonic flutter characteristics of composite cylindrical panels", Compos. Struct., 82(2), 295-301. https://doi.org/10.1016/j.compstruct.2007.01.007.
  28. Singha, M.K. and Ganapathi, M. (2005), "A parametric study on supersonic flutter behavior of laminated composite skew flat panels", Compos. Struct., 69(1), 55-63. https://doi.org/10.1016/j.compstruct.2004.04.018.
  29. Srinivasan, R. and Babu, B. (1985), "Flutter analysis of cantilevered quadrilateral plates", J. Sound Vib., 98(1), 45-53. https://doi.org/10.1016/0022-460X(85)90401-8.
  30. Tang, H., Li, Y., Chen, X., Shum, K.M. and Liao, H. (2017), "Flutter performance of central-slotted plate at large angles of attack", Wind Struct., 24(5), 447-464. https://doi.org/10.12989/was.2017.24.5.447.
  31. Torabi, K. and Afshari, H. (2016), "Generalized differential quadrature method for vibration analysis of cantilever trapezoidal FG thick plate", J. Solid Mech., 8(1), 184-203.
  32. Torabi, K. and Afshari, H. (2017), "Optimization for flutter boundaries of cantilevered trapezoidal thick plates", J. Brazilian Soc. Mech. Sci. Eng., 39(5), 1545-1561. https://doi.org/10.1007/s40430-016-0688-2
  33. Torabi, K. and Afshari, H. (2017), "Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates", J. Sandwich Struct. Mater., 1099636217697492. https://doi.org/10.1177/1099636217697492.
  34. Torabi, K. and Afshari, H. (2017), "Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness", Eng. Solid Mech., 5(1), 71-92. https://doi.org/10.5267/j.esm.2016.7.001
  35. Torabi, K., Afshari, H. and Aboutalebi, F.H. (2017), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sandwich Struct. Mater., 1099636217728746.
  36. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  37. Vedeneev, V.V. (2012), "Panel flutter at low supersonic speeds", J. Fluid. Struct., 29, 79-96. https://doi.org/10.1016/j.jfluidstructs.2011.12.011.
  38. Vedeneev, V.V. (2013), "Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds", J. Fluid. Struct., 40, 366-372. https://doi.org/10.1016/j.jfluidstructs.2013.04.004.
  39. Vedeneev, V.V., Guvernyuk, S.V., Zubkov, A.F. and Kolotnikov, M.E. (2010), "Experimental observation of single mode panel flutter in supersonic gas flow", J. Fluid. Struct., 26(5), 764-779. https://doi.org/10.1016/j.jfluidstructs.2010.04.004.
  40. Wang, K., Liao, H. and Li, M. (2016), "Flutter suppression of long-span suspension bridge with truss girder", Wind Struct., 23(5), 405-420. https://doi.org/10.12989/was.2016.23.5.405.

Cited by

  1. Modeling and computational simulation for supersonic flutter prediction of polymer/GNP/fiber laminated composite joined conical-conical shells vol.15, pp.1, 2022, https://doi.org/10.1016/j.arabjc.2021.103460