DOI QR코드

DOI QR Code

전분 유래 저열량 식품소재의 개발과 산업적 이용

Development and industrial application of low-calorie food ingredients derived from starches

  • 정현정 (전남대학교 식품영양과학부)
  • 투고 : 2019.10.30
  • 심사 : 2019.11.08
  • 발행 : 2019.12.31

초록

소비자들은 건강에 관한 관심이 계속 증가할 것이며 이에 저열량 식품에 대한 요구에 부응하는 소재의 개발이 필요하다. 저열량 식품소재의 개발에 있어 열량을 낮춘 소재의 기능성과 최종제품의 품질을 잘 유지할 수 있는 관능성이 중요하다. 이에 난소화성 전분과 난소화성 말토덱스트린은 이러한 필요를 충족시킬 수 있는 소재이며 일반 식이섬유보다 다양한 제품에 품질을 자유롭게 조절할 수 있는 장점이 있다. 난소화성 전분은 입자가 작고 색이 하얗고 특별한 냄새와 맛이 없기에 제빵, 파스타, 시리얼, 스낵 제품 등에 식이섬유 함량을 높이거나 제품의 품질을 향상하는데 저열량 소재로 사용되고 있고 난소화성 말토덱스트린은 식후혈당 상승억제, 혈중 중성지방 개선, 배변 활동 원활하게 하는 기능성 원료이기에 음료, 건강보조식품, 일반 식품에서 저열량 소재로 많이 활용되고 있으며 앞으로도 다양한 저열량 식품에 소재로 활용될 것이다.

Indigestible carbohydrates as dietary fiber have attracted interest of consumers due to their several physiological benefits. Recent definitions of dietary fiber have included other indigestible carbohydrates such as resistant starch and resistant maltodextrins, which are natural, colorless, odorless and tasteless low-calorie food ingredients. Unlike some carbohydrates and digestible starches, indigestible starch and maltodextrin resist enzymatic hydrolysis in the upper gastrointestinal tract, resulting in little or no direct glucose absorption. In addition, there is increased microbial fermentation production of short-chain fatty acids in the large intestine. As an emerging functional low-calorie food ingredient, resistant starch and maltodextrin have been shown to have equivalent or superior impacts on human health compared to conventional fiber-enriched food ingredients. In this paper, the definition, strategies to enhance dietary fiber content in foods, some potential health benefits, and applications in food industry for indigestible starch and maltodextrin are summarized and discussed.

키워드

참고문헌

  1. Ai Y. Structures, properties, and digestibility of resistant starch. PhD thesis, Iowa State University, Ames, IA, USA (2013)
  2. Akerberg AKE, Liljeberg HGM, Granfeldt YE, Drews AW, Bjorck IME. An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J. Nutr. 128: 651-660 (1998) https://doi.org/10.1093/jn/128.3.651
  3. Al-Tamimi EK, Seib PA, Snyder BS, Haub MD. Consumption of Cross-linked resistant starch (RS4XL) on glucose and insulin responses in humans. J. Nutr. Metab. 2010: 651063 (2010) https://doi.org/10.1155/2010/651063
  4. Annison G, Topping DL. Nutritional role of resistant starch: Chemical structure vs physiological function. Annu. Rev. Nutr. 14: 297-320 (1994) https://doi.org/10.1146/annurev.nu.14.070194.001501
  5. Behall KM, Scholfield DJ, Hallfrisch JG, Liljeberg-Elmstahl HGM. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 29: 976-981 (2006) https://doi.org/10.2337/dc05-2012
  6. Berry CS. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fiber. J. Cereal Sci. 4: 301-314 (1986) https://doi.org/10.1016/s0733-5210(86)80034-0
  7. Champ M, Martin L, Noah L, Gratas M. Analytical methods for resistant starch. pp 169-187. In: Complex Carbohydrates in Foods. Cho SS, Prosky L, Dreher M (eds.) Marcel Dekker, New York, NY, USA (1999).
  8. Cheng HH, Lai MH. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats. J. Nutr. 130: 1991-1995 (2000) https://doi.org/10.1093/jn/130.8.1991
  9. Chung HJ, Donner E, Liu Q. Food systems: Resistant starches in foods. Vol. 4, pp. 527-534. In: Comprehensive Biotechnology (Second Edition). Murray MY (ed.). Elsevier Science Pub., Amsterdam, The Netherlands (2011)
  10. Chung HJ, Liu Q, Hoover R. The impact of annealing and heatmoisture treatments on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym. 75: 436-447 (2009) https://doi.org/10.1016/j.carbpol.2008.08.006
  11. Chung HR. 저열량식품의 표시 및 규격기준. Food Ind. Nutr. 3: 24-29 (1998)
  12. Eerlingen RC, Cillen G, Delcour JA. Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch. Cereal Chem. 71: 170-177 (1994)
  13. Englyst H, Wiggins HS, Cummings JH. Determination of the nonstarch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107: 307-318 (1982) https://doi.org/10.1039/an9820700307
  14. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992)
  15. Fujiwara K, Matsuoka A. Improvement of glucose tolerance by low-viscosity, water-soluble dietary fiber, indigestible dextrin. Jpn. J. Nutr. Diet. 53: 361-368 (1995) https://doi.org/10.5264/eiyogakuzashi.53.361
  16. Granfeldt Y, Bjorck I. Glycemic response to starch in pasta-a study of mechanisms of limited enzyme availability. J. Cereal Sci. 14: 47-61 (1991) https://doi.org/10.1016/S0733-5210(09)80017-9
  17. Haralampu SG. Resistant starch - a review of the physical properties and biological impact of RS3. Carbohydr. Polym. 41: 285-292 (2000) https://doi.org/10.1016/S0144-8617(99)00147-2
  18. Hasjim J, Lee SO, Hendrich S, Setiawan S, Ai YF, Jane JL. Characterization of a novel resistant starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 87: 257-262 (2010) https://doi.org/10.1094/CCHEM-87-4-0257
  19. Hoover R, Hannouz D, Sosulski FW. Effects of hydroxypropylation on thermal properties, starch digestibility and freeze-thaw stability of field pea (Pisum sativum cv Trapper). Starch 40: 383-387 (1988) https://doi.org/10.1002/star.19880401005
  20. Hwang JK. 저열량 탄수화물 대체 식품소재의 기능성과 산업적 이용. Food Ind. Nutr. 3: 18-23 (1998)
  21. Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, Kasper H, Scheppach W. Effects of resistant starch on the colon in healthy volunteers: Possible implications for cancer prevention. Am. J. Clin. Nutr. 67: 136-142 (1998) https://doi.org/10.1093/ajcn/67.1.136
  22. Jeong D, Han JA, Liu Q, Chung HJ. Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocolloid. 90: 367-376 (2019) https://doi.org/10.1016/j.foodhyd.2018.12.039
  23. Kang NE, Lee IS, Cho MS. Physicochemical and sensory quality characteristics of jelly prepared with various levels of resistant starch. Korean J. Food Nutri. 19: 532-538 (2006)
  24. Kishimoto Y, Oga H, Tagami H, Okuma K, Gordon D. Suppressive effect of resistant maltodextrin on postprandial blood triacylglycerol elevation. Eur. J. Nutr. 46: 133-138 (2007) https://doi.org/10.1007/s00394-007-0643-1
  25. Lee GJ. Low calorie foods. Clin. Diabetes 8: 320-326 (2007)
  26. Matsuda I, Satouchi M. Agent for promoting the proliferation of bifidobacterium. U.S. Patent 5,698,437 (1994)
  27. McCleary BV, Monaghan DA. Measurement of resistant starch. J. AOAC Int. 85: 665-675 (2002) https://doi.org/10.1093/jaoac/85.3.665
  28. Miao M, Jiang B, Cui SW, Zhang T, Jin Z. Slowly digestible starch-A review. Crit. Rev. Food Sci. Nutr. 55: 1642-1657(2015) https://doi.org/10.1080/10408398.2012.704434
  29. Min BC. New modified food starch products and strategy of development. Food Sci. Ind. 47: 2-10 (2014)
  30. Morais MB, Feste A, Miller RG, Lifichitz CH. Effect of resistant starch and digestible starch on intestinal absorption of calcium, iron and zinc in infant pigs. Paediatr. Res. 39: 872-876 (1996) https://doi.org/10.1203/00006450-199605000-00022
  31. Muir JG, O'Dea K. Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro. Am. J. of Clin. Nutr. 56: 123-127 (1992) https://doi.org/10.1093/ajcn/56.1.123
  32. Parikh A, Agarwal S, Raut K. A review on applications of maltodextrin in pharmacutical industry. Rev. Article Pharmaceut. Sci. 4: 67-74 (2014)
  33. Reader D, Johnson ML, Hollander P, Franz M. The glycemic and insulinemic response of resistant starch in a food bar vs. two commercially available food bars in persons with type II diabetes mellitus. Diabetes 46: 975-975 (1997)
  34. Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch - A review. Compr. Rev. Food Sci. Food Safety 5: 1-17 (2006) https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
  35. Shai I,Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S et al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N. Engl. J. Med. 359: 229-241 (2008) https://doi.org/10.1056/NEJMoa0708681
  36. Shimotoyodome A, Suzuki J, Fukuoka D, Tokimitsu I, Hase T. RS4-type resistant starch prevents high-fat diet-induced obesity via increased hepatic fatty acid oxidation and decreased postprandial GIP in C57BL/6J mice. Am. J. of Physiol. Endocr. Metab. 298: E652-E662 (2010) https://doi.org/10.1152/ajpendo.00468.2009
  37. Shin MS. Development and application of resistant starch. Food Ind. Nutr. 9: 1-9 (2004)
  38. Sorndech W, Tongta S, Blennow A. Slowly digestible and nondigestible ${\alpha}$-glucans: An enzymatic approach to starch modification and nutritional effects. Starch 70: 145-158 (2017)
  39. Thompson DB. Strategies for the manufacture of resistant starch. Trends Food Sci. Tech. 11: 245-253 (2000) https://doi.org/10.1016/S0924-2244(01)00005-X
  40. Wakabayashi S, Kishimoto Y, Nanbu S, Matsuoka A. Effects of Indigestible Dextrin on Postprandial Rise in Blood Glucose Levels in Man. J. Jpn. Assoc. Diet. Fiber Res. 3: 13-19 (1999)
  41. Wang YJ, Kozlowskl R, Delgado GA. Enzyme resistant dextrins from high amylose corn mutant starches. Starch 53: 21-26 (2001) https://doi.org/10.1002/1521-379X(200101)53:1<21::AID-STAR21>3.0.CO;2-K
  42. Watanabe N, Suzuki M, Yamaguchi Y, Egshira Y. Effects of resistant maltodextrin on bowel movements: a systematic review and meta-analysis. Clin. Experimental Gastroent. 11: 85-96 (2018) https://doi.org/10.2147/CEG.S153924
  43. Woo DH, Kang HS, Lee YS, Park YJ, Lee HS. Effects of indigestible dextrin on lipid metabolism in rats fed normal or high fat diet. Korean Nutr. Soc. 31: 981-990 (1998)
  44. Woo DH, Moon TW. Methods for preparing indigestible dextrin with high digestible fraction. Korean J. Food Sci. Technol. 32: 610-617 (2000a).
  45. Woo DH, Moon TW. Preparation of indigestible dextrin from pyrodextrin. Korean J. Food Sci. Technol. 32: 618-628 (2000b).
  46. Woo KS, Seib PA. Cross-linked resistant starch: Preparation and properties. Cereal Chem. 70: 596-601 (2002)
  47. Zhao YS, Hasjim J, Li L, Jane JL, Hendrich S, Birt DF. Inhibition of Azoxymethane-induced preneoplastic lesions in the rat colon by a coked stearic acid complexed high-amylose cornstarch. J. Agr. Food Chem. 59: 9700-9708 (2011) https://doi.org/10.1021/jf202002c