DOI QR코드

DOI QR Code

Current research trends on starch nanoparticles (SNPs)

녹말 나노 입자의 연구 현황

  • Oh, Seon-Min (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University)
  • 오선민 (경희대학교 생명자원과학연구원 식품생명공학과 및 생명공학원) ;
  • 백무열 (경희대학교 생명자원과학연구원 식품생명공학과 및 생명공학원)
  • Received : 2019.10.15
  • Accepted : 2019.11.19
  • Published : 2019.12.31

Abstract

In recent years, starch nanoparticles (SNPs) have been received much attention due to their unique characteristics different from native starch. Also, SNPs have economic and environmental advantages because they are prepared from starch, a cheap and safe natural polymer. It can be used in various industrial applications such as food additives, drug carriers, etc. SNPs have been prepared using different methods and their physiochemical, functional properties and possible industrial applications have been reported. Based on these studies, SNPs are expected to be the promising food materials and expand their utilization in many industries in the future. This review covered the overall researches on SNPs, including preparation, physicochemical and functional properties, and discussed their current and future applications including resistant starch materials.

Keywords

References

  1. Akhavan A, Ataeevarjovi E. The effect of gamma irradiation and surfactants on the size distribution of nanoparticles based on soluble starch. Radiat. Phys. Chem. 81: 913-914 (2012) https://doi.org/10.1016/j.radphyschem.2012.03.004
  2. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules. 5: 1545-1551 (2004) https://doi.org/10.1021/bm049914u
  3. Boufi S, Haaj SB, Magnin A, Pignon F, Imperor-Clerc M, Mortha G. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrason. Sonochem. 41: 327-336 (2018) https://doi.org/10.1016/j.ultsonch.2017.09.033
  4. Chin SF, Azman A, Pang SC. Size controlled synthesis of starch nanoparticles by microemulsion method. J. Nanomater. 2014: 9 (2014)
  5. Chin SF, Pang SC, Tay SH. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohyd. Polym. 86: 1817-1819 (2011) https://doi.org/10.1016/j.carbpol.2011.07.012
  6. Ding Y, Zheng J, Zhang F, Kan J. Synthesis and characterization of retrograded starch nanoparticles through homogenization and miniemulsion cross-linking. Carbohyd. Polym. 151: 656-665 (2016) https://doi.org/10.1016/j.carbpol.2016.06.007
  7. Dong Y, Chang Y, Wang Q, Tong J, Zhou J. Effect of operating conditions on size and morphology of amylose nanoparticles prepared by precipitation. Starch-Starke. 67: 365-372 (2015) https://doi.org/10.1002/star.201400182
  8. Fang YY, Wang LJ, Li D, Li BZ, Bhandari B, Chen XD, Mao ZH. Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohyd. Polym. 74: 379-384 (2008) https://doi.org/10.1016/j.carbpol.2008.03.005
  9. Giezen FE, Jongboom ROJ, Feil H, Gotlieb KF, Boersma A. Biopolymer nanoparticles. Google Patents (2004)
  10. Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. Protoplasma. 255: 1855-1876 (2018) https://doi.org/10.1007/s00709-018-1259-4
  11. Haaj SB, Magnin A, Petrier C, Boufi S. Starch nanoparticles formation via high power ultrasonication. Carbohyd. Polym. 92: 1625-1632 (2013) https://doi.org/10.1016/j.carbpol.2012.11.022
  12. Hao Y, Chen Y, Li Q, Gao Q. Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohyd. Polym. 184: 171-177 (2018) https://doi.org/10.1016/j.carbpol.2017.12.042
  13. Huang Q, Li L, Fu X. Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch-Starke. 59: 371-378 (2007) https://doi.org/10.1002/star.200700614
  14. Jambrak AR, Herceg Z, Subaric D, Babic J, Brncic M, Brncic SR, Bosiljkov T, Cvek D, Tripalo B, Gelo J. Ultrasound effect on physical properties of corn starch. Carbohyd. Polym. 79: 91-100 (2010) https://doi.org/10.1016/j.carbpol.2009.07.051
  15. Jayakody L, Hoover R. The effect of lintnerization on cereal starch granules. Food. Res. Int. 35: 665-680 (2002) https://doi.org/10.1016/S0963-9969(01)00204-6
  16. Jiang S, Li M, Chang R, Xiong L, Sun Q. In vitro inhibition of pancreatic ${\alpha}$-amylase by spherical and polygonal starch nanoparticles. Food Funct. 9: 355-363 (2018) https://doi.org/10.1039/C7FO01381G
  17. Kaur J, Kaur G, Sharma S, Jeet K. Cereal starch nanoparticles-A prospective food additive: A review. Crit. Rev. Food. Sci. 58: 1097-1107 (2018) https://doi.org/10.1080/10408398.2016.1238339
  18. Kim HY, Park SS, Lim ST. Preparation, characterization and utilization of starch nanoparticles. Colloid. Surface. B. 126: 607-620 (2015) https://doi.org/10.1016/j.colsurfb.2014.11.011
  19. Kim HY, Lee JH, Kim JY, Lim WJ, Lim ST. Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch-Starke. 64: 367-373 (2012) https://doi.org/10.1002/star.201100105
  20. Kim JY, Park DJ Lim ST. Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal. Chem. 85: 182-187 (2008) https://doi.org/10.1094/CCHEM-85-2-0182
  21. Lamanna M, Morales NJ, Garcia NL, Goyanes S. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohyd. Polym. 97: 90-97 (2013) https://doi.org/10.1016/j.carbpol.2013.04.081
  22. Le Corre D, Angellier-Coussy H. Preparation and application of starch nanoparticles for nanocomposites: A review. React. Funct. Polym. 85: 97-120 (2014) https://doi.org/10.1016/j.reactfunctpolym.2014.09.020
  23. Le Corre D, Bras J, Dufresne A. Starch nanoparticles: a review. Biomacromolecules. 11: 1139-1153 (2010) https://doi.org/10.1021/bm901428y
  24. Le Corre D, Vahanian E, Dufresne A, Bras J. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules. 13: 132-137 (2011)
  25. Liu D, Wu Q, Chen H, Chang PR. Transitional properties of starch colloid with particle size reduction from micro-to nanometer. J. Colloid. Interf. Sci. 339: 117-124 (2009) https://doi.org/10.1016/j.jcis.2009.07.035
  26. Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules. 4: 1198-1202 (2003) https://doi.org/10.1021/bm0340422
  27. Shi M, Chen Y, Yu S, Gao Q. Preparation and properties of RS III from waxy maize starch with pullulanase. Food. Hydrocolloid. 33: 19-25 (2013) https://doi.org/10.1016/j.foodhyd.2013.02.018
  28. Song D, Thio YS, Deng Y. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohyd. Polym. 85: 208-214 (2011) https://doi.org/10.1016/j.carbpol.2011.02.016
  29. Sun Q, Gong M, Li Y, Xiong L. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohyd. Polym. 111: 133-138 (2014a) https://doi.org/10.1016/j.carbpol.2014.03.094
  30. Sun Q, Li G, Dai L, Ji N, Xiong L. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food. Chem. 162: 223-228 (2014b) https://doi.org/10.1016/j.foodchem.2014.04.068
  31. Suriya M, Reddy CK, Haripriya S, Harsha N. Influence of debranching and retrogradation time on behavior changes of Amorphophallus paeoniifolius nanostarch. Int. J. Biol. Macromol. 120: 230-236 (2018) https://doi.org/10.1016/j.ijbiomac.2018.08.059
  32. Tan Y, Xu K, Li L, Liu C, Song C, Wang P. Fabrication of sizecontrolled starch-based nanospheres by nanoprecipitation. ACS. Appl. Mater. Inter. 1: 956-959 (2009) https://doi.org/10.1021/am900054f
  33. Wu X, Chang Y, Fu Y, Ren L, Tong J, Zhou J. Effects of non-solvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch-Starke. 68: 258-263 (2016) https://doi.org/10.1002/star.201500269
  34. Wurm FR, Weiss CK. Nanoparticles from renewable polymers. Front. Chem. 2: 49 (2014)
  35. Yan X, Chang Y, Wang Q, Fu Y, Zhou J. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation. Int. J. Biol. Macromol. 97: 481-488 (2017) https://doi.org/10.1016/j.ijbiomac.2017.01.075
  36. Yu Y, Wang J. Effect of ${\gamma}$-ray irradiation on starch granule structure and physicochemical properties of rice. Food. Res. Int. 40: 297-303 (2007) https://doi.org/10.1016/j.foodres.2006.03.001
  37. Zhou G, Luo Z, Fu X. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system. Ind. Crop. PROD. 52: 105-110 (2014) https://doi.org/10.1016/j.indcrop.2013.10.019
  38. Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends. Food. Sci. Tech. 43: 1-17 (2015) https://doi.org/10.1016/j.tifs.2014.12.008