DOI QR코드

DOI QR Code

Modelling The Population Dynamics of Laodelphax striatellus Fallén on Rice

벼에서 애멸구(Laodelphax striatellus Fallén) 개체군 밀도 변동 예측 모델 구축

  • Kwon, Deok Ho (Department of Vegetable Crops, Korea National College of Agriculture and Fisheries) ;
  • Jeong, In-Hong (Crop protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA) ;
  • Seo, Bo Yoon (Crop protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Hey-Kyung (Department of Industrial Entomology, Korea National College of Agriculture and Fisheries) ;
  • Park, Chang-Gyu (Department of Industrial Entomology, Korea National College of Agriculture and Fisheries)
  • 권덕호 (한국농수산대학 채소학과) ;
  • 정인홍 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 서보윤 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 김혜경 (한국농수산대학 산업곤충학과) ;
  • 박창규 (한국농수산대학 산업곤충학과)
  • Received : 2019.09.26
  • Accepted : 2019.11.22
  • Published : 2019.12.01

Abstract

Temperature-dependent traits of Laodelphax striatellus, rice stripe virus vector, were investigated at 10 constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, and 35.0 ± 1℃) under a fixed photoperiod (14/10-hr light/dark cycle). Unit functions for the oviposition model were estimated and implemented into a population dynamics model using DYMEX. The longevity of L. striatellus adults decreased with increasing temperature (56.0 days at 15.0℃ and 17.7 days at 35.0℃). The highest total fecundity (515.9 eggs/female) was observed at 22.5℃, while the lowest (18.6 eggs/female) was observed at 35.0℃. Adult developmental rates, temperature-dependent fecundity, age-specific mortality rates, and age-specific cumulative oviposition rates were estimated. All unit equations described adult performances of L. striatellus accurately (r2 =0.94~0.97). After inoculating adults, the constructed model was tested under pot and field conditions using the rice-plant hopper system. The model output and observed data were similar up to 30 days after inoculation; however, there were large discrepancies between observed and estimated population density after 30 days, especially for 1st and 2nd instar nymph densities. Model estimates were one or two nymphal stages faster than was observed. Further refinement of the model created in this study could provide realistic forecasting of this important rice pest.

벼에 줄무늬잎마름병을 유발하는 애멸구(Laodelphax striatellus)의 온도에 따른 산란 등 성충 활동 특성을 12.5~35.0℃ 10개 항온조건 광주기 14L:10D에서 조사하였다. 산란모델을 만들기 위한 단위 함수를 개발하고 DYMEX를 이용하여 개체군 밀도 변동 모델을 구축하였다. 성충 수명은 15.0℃에서 56.0일로 가장 길었고, 35.0℃에서 17.7일로 가장 짧았으며 온도가 올라감에 따라 수명도 짧아지는 경향을 보였다. 암컷 한 마리당 총산란수는 22.5℃에서 515.9개로 가장 많았으며, 35℃에서 18.6개로 가장 적었다. 산란 모델 개발을 위해 성충발육율, 총산란수, 성충사망율 및 누적산란율 단위모델을 추정한 결과, 단위모델 모두에서 높은 수준의 모델 적합성을 보였다(r2=0.94~0.97). 개체군 밀도 변동 모델은 포트와 포장 실험을 통하여 예측 정확도를 평가하였다. 포트 및 포장 실험 결과 접종 후 30일까지는 각 조사 시점에서 밀도 및 영기 분포 비율의 예측 정확도가 비교적 높았으나 이후에는 1, 2령의 조사 밀도와 예측 밀도 간에 큰 차이가 발생하였고, 영기 분포 변화의 경우도 모델에서 실제 조사 자료보다 1~2단계의 발육 영기가 빠르게 추정되는 경향을 보였다.

Keywords

References

  1. Bae, S.D., Kim D.K. 1994. Occurrence of small brown planthopper (Laodelphax striatellus Fallen) and incidence of rice virus disease by different seeding date in dry seeded rice. Koeran J. Appl. Entomol. 33, 173-177.
  2. Chung, B.J., 1974. Studies on the occurrence, host range, transmission, and control of rice stripe disease in Korea. Kor. J. Plant Prot. 13, 181-204.
  3. Hibino, H., 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34, 249-274. https://doi.org/10.1146/annurev.phyto.34.1.249
  4. Hyun, J.S., Woo, K.S., Ryoo, M.I., 1977. Studies on the seasonal increase of the population of the smaller brown planthopper, Laodelphax striatellus (Fallen). Kor. J. Plant. Prot. 16: 13-19.
  5. Lee, B.C., Cho, S-.Y., Yoon, Y-.N., Kang, I.J., Lee, J.H., Kwak, D.Y., Shin, D.B., Kang, H-.W., 2012. Change in occurrence of rice stripe virus disease. Res. Plant Dis. 18, 402-405. https://doi.org/10.5423/RPD.2012.18.4.402
  6. Maywald, G.F., Bottomley, W., Sutherst, R.W., 2007a. DYMEX Model simulator, version3 user's guide. Hearne Scientific Software Pty Ltd, Melbourne 3000, Australia.
  7. Maywald, G.F., Kriticos, D.J., Sutherst, R.W., Bottomley, W., 2007b. DYMEX Model builder, version3 user's guide. Hearne Scientific Software Pty Ltd, Melbourne 3000, Australia.
  8. Otuka, A., Zhou, Y., Lee, G. S., Matsumura, M., Zhu, Y., Park, H.H., Liu, Z., Sanada-morimura, S., 2012, Prediction of overseas migration of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae) in East Asia. Appl. Entomol. Zool. 47, 379-388. https://doi.org/10.1007/s13355-012-0130-x
  9. Park, C.-G., Park, H.-H., Kim, K.-H., 2011. Temperature-dependent development model and forecasting of adult emergence of overwintered small brown planthopper, Laodelphax striatellus Fallen, population. Korean J. Appl. Entomol. 50, 343-352. https://doi.org/10.5656/KSAE.2011.10.0.62
  10. Park, C.-G., Yum K.-H., Lee, S.-K., Lee, S.-G., 2015. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricius)(Hemiptera: Alydidae) using DYMEX. Korean J. Appl. Entomol. 54, 73-81. https://doi.org/10.5656/KSAE.2015.03.0.007
  11. Park, J.W., Jin, T.S., Choi, H.S.,, Lee, S.H., Shin,, D.B., Oh, I.S., Lee, S.G., Lee, M.H., Choi, B.R., Bae, S.D., Kim, J.Y., Han, K.S., Noh, T.H., Ko,, S.J. Park, J.D., Lee, B.C., Kim, T.S., Chung, B.K., Hong, S.J., Kim, C.H., Park, H.M., Lee, K.W., 2009. Incidence of rice stripe virus during 2002 to 2004 in Korea and chemical control of small brown planthopper. Korean J. Pestic. Sci. 13, 309-314.
  12. SAS Institute, 2002. SAS User's Guide; Statistics Version 9.1ed. SAS Institute. Cary NC.
  13. SYSTAT software inc., 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. inc. San Jose, CA.
  14. Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling distribution of insect development time: a literature review and application of the Weibull function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475