DOI QR코드

DOI QR Code

Interspecific Hybridization between Matsumuraeses phaseoli and M. falcana (Lepidoptera: Tortricidae) and Postzygotic Reproductive Isolation

팥나방(Matsumuraeses phaseoli)과 어리팥나방(M. falcana)의 종간 교잡과 접합후 생식격리

  • Jung, Jin Kyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science) ;
  • Park, Chang-Gyu (Korea National College of Agriculture and Fisheries) ;
  • Moon, Jung-Kyung (Planning and Coordination Division, National Institute of Agricultural Sciences) ;
  • Kim, Eun Young (Crop Cultivation and Environment Research Division, National Institute of Crop Science) ;
  • Cho, Jum Rae (Crop Protection Division, National Institute of Agricultural Sciences) ;
  • Seo, Bo Yoon (Crop Protection Division, National Institute of Agricultural Sciences)
  • 정진교 (국립식량과학원 재배환경과) ;
  • 박창규 (한국농수산대학) ;
  • 문중경 (국립농업과학원 기획조정과) ;
  • 김은영 (국립식량과학원 재배환경과) ;
  • 조점래 (국립농업과학원 작물보호과) ;
  • 서보윤 (국립농업과학원 작물보호과)
  • Received : 2019.11.04
  • Accepted : 2019.11.13
  • Published : 2019.12.01

Abstract

Artificial interspecific matings between Matsumuraeses phaseoli and M. falcana (Lepidoptera: Tortricidae) were conducted to know the possibility of hybridization of the two sympatric species. Reciprocal crossings successfully produced F1 hybrids. Most of F2 crosses yielded progenies except all mating trials with females of F1 hybrid obtained from M. phaseoli female. Inbreedings of the F2 hybrids produced F3 progenies. In backcrossings between F1 hybrids and parent lines, all the two mating trials with females of F1 hybrid obtained from M. phaseoli females did not produce any progeny, while other 6 backcrosses produced the next generations. Inbreedings of the backcross lines also produced subsequent progenies. These results indicated that F1 females produced from hybridization between M. phaseoli females and M. falcana males were sterile. Conclusively, it suggested that a partial reproductive isolation at a postzygotic stage can occur between the two sympatric species.

동소동속종인 팥나방(Matsumuraeses phaseoli)과 어리팥나방(M. falcana)(나비목: 잎말이나방과) 사이에 교잡 가능성을 알아보기 위해서 실험실에서 인위적으로 두 종을 교잡시켰다. 두 종의 암수를 교차하여 교미시켰을 때, F1 잡종세대가 발생하였다. 두 잡종세대 집단을 집단 내 및 집단 간 암수를 교차하여 교미시킨 경우들에서, 팥나방 암컷과 어리팥나방 수컷이 교잡되어 생성된 F1 잡종세대 집단(H집단)의 암컷이 같은 집단의 수컷 혹은 다른 집단의 수컷과 교미되었을 때, F2 후대를 거의 생성하지 못했다. 다른 집단으로 만들어진 F2 세대는 집단 내 교미에서 F3 세대를 생성시켰다. F1 잡종세대 집단 암수와 팥나방 혹은 어리팥나방 암수를 각각 교차하여 교미시킨 역교잡 8개 집단 중에서도 H집단의 암컷과 짝지어진 어미세대 수컷 집단 2개는 전혀 산란하지 못했다. 후대가 생성된 다른 6개 집단은 모두 집단 내 암수 교미에서 역교잡 F2 세대를 생성하였다. 이 결과는 팥나방 암컷과 어리팥나방 수컷이 교미하였을 경우 F1 후대잡종을 생성할 수 있으나, 이 F1 후대잡종 암컷은 불임이 되는 것을 나타냈다. 결과적으로 두 종 사이에 접합후 생식단계에서 부분적인 생식격리가 발생할 수 있는 것을 나타냈다.

Keywords

References

  1. Byun, B.K., Bae, Y.S., Park, K.T., 1998. Illustrated catalogue of Tortricidae in Korea (Lepidoptera), Insects of Korea, series 2, KRIBS&CIS, Chunchon.
  2. Byun, B-.K., Park, K-.T., Park, Y-.M., 2005. Review of Genus Matsumuraeses Issiki (Lepidoptera, Tortricidae) with discovery of M. falcana (Walsingham) in Korea. J. Asia-Pacific Entomol. 8, 117-122. https://doi.org/10.1016/S1226-8615(08)60080-1
  3. Centofante, L., Bertollo, L.A.C., Buckup, P.A., Moreira-Filho, O., 2003. Chromosomal divergence and maintenance of sympatric Characidium fish species (Crenuchidae, Characidiinae). Hereditas 138, 213-218. https://doi.org/10.1034/j.1601-5223.2003.01714.x
  4. Cho, J.R., Choi, K.S., Jung, J.K., Park, J.H., Seo, B.Y., 2007. Development of sex pheromone trap for monitoring Matsumuraeses falcana (Walshingham) (Lepidoptera: Tortricidae). J. Asia-Pacific Entomol. 10, 345-349. https://doi.org/10.1016/S1226-8615(08)60374-X
  5. Cho, J.R., Jung, J.K., Yang, C.Y., Seo, B.Y., Yum, K.H., 2013. Eclosion and mating behavior of Matsumuraeses phaseoli (Matsumura) (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 52, 249-253. https://doi.org/10.5656/KSAE.2013.07.0.014
  6. Dobzhansky, T., 1970. Genetics of the evolutionary process, Columbia University Press, New-York.
  7. Fukova, I., Nguyen, P., Marec, F., 2005. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48, 1083-1092. https://doi.org/10.1139/g05-063
  8. Haldane, J.B.S., 1922. Sex ratio and unisexual sterility in hybrid animals. J. Gen. 12, 101-109. https://doi.org/10.1007/BF02983075
  9. Heo, H.J., Son, Y.R., Seo, B.Y., Jung, J.K., Kim, Y., 2009. A molecular marker discriminating the soybean podworm, Matsumuraeses phaseoli and the podborer, M. falcana (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 48, 547-551. https://doi.org/10.5656/KSAE.2009.48.4.547
  10. Jung, J.K., Seo, B.Y., Park, J.H., Moon, J.K., Choi, B.S., Lee, Y.H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semisynthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399. https://doi.org/10.5656/KSAE.2007.46.3.393
  11. Jung, J.K., Seo, B.Y., Cho, J-.R., Kwon, Y-.H., Kim, G-.H., 2009. Occurrence of lepidopteran insect pests and injury aspects in adzuki bean fields. Korean J. Appl. Entomol. 48, 29-35. https://doi.org/10.5656/KSAE.2009.48.1.029
  12. Jung, J.K., Seo, B.Y., Kim, Y., Lee, S.-W., 2016. Can Maruca vitrata (Lepidoptera: Crambidae) over-winter in Suwon Area? Korean J. Appl. Entomol. 55, 439-444. https://doi.org/10.5656/KSAE.2016.11.0.060
  13. Kobayashi, T., Oku, T., 1980. Sampling lepidopterous pod borers on soybean, in: Kogan, M., Herzog, D.C.(Eds.), Sampling methods in soybean entomology. Springer-Verlag, New York, pp.422-437.
  14. Mayr, E., 1996. What is a species, and what is not? Philos. Sci. 63, 262-277. https://doi.org/10.1086/289912
  15. Oku, T., Miyahara, Y., Fujimura, T., Toki, A., 1983. Preliminary note on Matsumuraeses species (Lepidoptera, Tortricidae) injuring soybeans in Tohoku district. Jap. J. Appl. Ent. Zool. 27, 28-34. https://doi.org/10.1303/jjaez.27.28
  16. SAS Institute, 2008. SAS OnlineDoc. version 9.1.3. SAS Institute, Cary NC.
  17. Seo, B.Y., Jung, J.K., Cho, J.R., Kim, Y., Park, C.G., 2012. A PCR method to distinguish Matsumuraeses phaseoli from M. falcana based on the difference of nucleotide sequence in the mitochondrial cytochrome c oxidase subunit I. Korean J. Appl. Entomol. 51, 365-370. https://doi.org/10.5656/KSAE.2012.09.0.037
  18. Sichova, J., Nguyen, P., Dalikova, M., Marec, F., 2013. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS One 8, e64520. https://doi.org/10.1371/journal.pone.0064520
  19. Wakamura, S., 1985. Identification of sex-pheromone components of the podborer, Matsumuraeses falcana (Walshingham) (Lepidoptera: Tortricidae). Appl. Ent. Zool. 20, 189-198. https://doi.org/10.1303/aez.20.189
  20. Wakamura, S., Kegasawa, K., 1986. Sex pheromone of the podborer, Matsumuraeses falcana (Walshingham) (Lepidoptera: Tortricidae): Activity of the third component, (E,Z)-7,9-dodecadienyl acetate, and 3-component formulation. Appl. Ent. Zool. 21, 334-339. https://doi.org/10.1303/aez.21.334
  21. Wang, C.Z., Dong, J.F., 2001. Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae). Chin. Sci. Bull. 46, 489-491. https://doi.org/10.1007/BF03187264
  22. Yum, K.H., 2010. Identification of sex pheromone of the soybean podworm, Matsumuraeses phaseoli Matsumura (Lepidoptera: Tortricidae). MS Thesis, Chungnam National University, Daejeon.