DOI QR코드

DOI QR Code

Damage assessment based on static and dynamic responses applied to foundation beams

  • Orbanich, Claudio J. (Engineering Department, Universidad Nacional del Sur) ;
  • Ortega, Nestor F. (Engineering Department, Universidad Nacional del Sur) ;
  • Robles, Sandra I. (Engineering Department, Universidad Nacional del Sur) ;
  • Rosales, Marta B. (Engineering Department, Universidad Nacional del Sur)
  • 투고 : 2019.02.06
  • 심사 : 2019.07.17
  • 발행 : 2019.12.10

초록

Foundations are a vital part of structures. Over time, the foundations can deteriorate due to unforeseen overloads and/or settlements, resulting in the appearance of cracks in the concrete. These cracks produce changes in the static and dynamic behavior of the affected foundation, which alter its load carrying capacity. In this work, non-destructive techniques of relative simplicity of application are presented for the detection, location, and quantification of damage, using numerical models, solved with the finite element method and Power Series. For this, two types of parameters are used: static (displacement and elastic curvature) and dynamics (natural frequencies). In the static analysis, the damage detection is done by means of a finite elements model representing a beam supported on an elastic foundation with a discrete crack that varies in length and location. With regard to dynamic analysis, the governing equations of the model are presented and a method based on Power Series is used to obtain the solution for a data set, which could be the Winkler coefficient, the location of the crack or the frequency. In order to validate the proposed methodologies, these techniques are applied to data obtained from laboratory tests.

키워드

과제정보

The authors wish to express their gratitude to the Engineering Department, General Secretariat of Science and Technology of the Universidad Nacional del Sur (Argentine), CIC and CONICET, for the support given in the course of this research.

참고문헌

  1. Abdo, M.A.B. (2012), "Parametric study of using only static response in structural damage detection", Eng. Struct., 34, 124-131. https://doi.org/10.1016/j.engstruct.2011.09.027.
  2. ALGOR 23, Profesional Mech/VE. Docutech, linear stress and dynamics, reference Division. Pittsburgh. Pennsylvania, 2010.
  3. Bernal, D. (2014), "Damage localization and quantification from the image of Changes in Flexibility", J. Eng. Mech., 140(2), 279286. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000617.
  4. Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Co., New York, NY, USA.
  5. Boumechra, N. (2017), "Damage detection in beam and truss structures by the inverse analysis of the static response due to moving loads", Struct. Control Health Monitor., 24(10). https://doi.org/10.1002/stc.1972.
  6. Buezas, F.S. (2009). Deteccion de dano en elementos meca-nicoestructurales: Modelado dentro de la Mecanica no lineal con inclusion de contacto en la falla., Ph.D. Dissertation, Universidad Nacional del Sur, Bahia Blanca, Argentina.
  7. Caddemi, S. and Morassi, A. (2007), "Crack detection in elastic beams by static measurements", J. Solids Struct., 44(16), 5301-5315. https://doi.org/10.1016/j.ijsolstr.2006.12.033.
  8. Ciambella, J., Vestroni, F. and Vidoli, S. (2011), "Damage observability, localization and assessment based on eigenfrequencies and eigenvectors curvatures", Smart Struct. Syst., 8(2), 191-204. https://doi.org/10.12989/sss.2011.8.2.191.
  9. Ercolani, G.D., Ortega, N.F. and Felix, D.H. (2017), "Metodologias para la localizacion de dano en vigas de hormigon pretensado", Revista de la Asociacion Latinoamericana de Control de Calidad, Patologia y Recuperacion de la Construccion, 7(3), 262-273.
  10. Ercolani, G.D., Ortega, N.F. and Felix, D.H. (2018a), "Deteccion de Dano en Vigas de Hormigon Pretensado Mediante el Metodo de Curvatura de la Elastica", Hormigon y Acero, 69(284), 39-48. https://doi.org/10.1016/j.hya.2017.09.002.
  11. Ercolani, G.D., Felix, D.H. and Ortega, N.F. (2018b), "Crack detection in prestressed concrete structures by measuring its natural frequencies", J. Civil Struct. Health Monitoring, 8(4), 661-671. https://doi.org/10.1007/s13349-018-0295-2.
  12. Erdenebat, D., Waldmann, D., Scherbaum, F. and Teferle, N. (2018), "The Deformation Area Difference (DAD) method for condition assessment of reinforced structures", Eng. Struct., 155(15), 315-329. https://doi.org/10.1016/j.engstruct.2017.11.034.
  13. Faye, J.P., Martin, C., Dalverny, O., Peres, F. and Judenherc, S. (2018), "Global methodology for damage detection and localization in civil engineering structures", Eng. Struct., 171, 686-695. https://doi.org/10.1016/j.engstruct.2018.06.026.
  14. Filipich, C. and Rosales, M. (2002), "A recurrence solution of strongly non-linear dynamical systems. Developments in Theoretical and Applied Mechanics", Proceedings of the SECTAM XXI, Orlando, USA.
  15. Filipich, C., Rosales, M.B. and Buezas, F. (2004), "Some nonlinear mechanical problems solved with analytical solutions", J. Latin American Appl. Res., 34, 101-109.
  16. Gounaris, G. and Dimarogonas, A., (1988), "A finite element of a cracked prismatic beam for structural analysis", Comput. Struct., 28(3), 309-313. https://doi.org/10.1016/0045-7949(88)90070-3.
  17. Homaei, F., Shojaee, S. and Ghodrati Amiri, G. (2014), "A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion", Struct. Eng. Mech., 49(2), 183-202. http://dx.doi.org/10.12989/sem.2014.49.2.183.
  18. Jiang, F., Rohatgi, A., Vecchio, K.S and Adharapurapu, R.R. (2004), "Crack Length Calculation for Bend Specimens Under Static and Dynamic Loading", Eng. Fracture Mech., 71, 1971-1985. https://doi.org/10.1016/j.engfracmech.2003.10.004.
  19. Karatzetzou, A. and Pitilakis, D. (2018), "Modification of Dynamic Foundation Response Due to Soil-Structure Interaction", J. Earthq. Eng., 22(5), 861-880. https://doi.org/10.1080/13632469.2016.1264335.
  20. Khalili, A. and Vosoughi Ali, R. (2018), "An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies", Inverse Problems Sci. Eng., 26(8), 1079-1093. https://doi.org/10.1080/17415977.2017.1377707.
  21. Labquest Interfase (Lab-Q). Vernier. Software and Technology, Beaverton, OR, USA, 2008.
  22. LOGGER PRO 3.6.1. Vernier. Software and Technology, Beaverton, OR, USA, 2008.
  23. Lozano-Galant, J.A., Nogal, M., Turmo, J. and Castillo, E. (2015), "Selection of measurement sets in static structural identification of bridges using observability trees", Comput. Concrete, 15(5), 771-794. https://doi.org/10.12989/cac.2015.15.5.771.
  24. Lu, Q., Ren, G. and Zhao, Y. (2002), "Multiple damage location with flexibility curve and relative frequency change for beam structure", J. Sound Vib., 253(5), 1101-1114. https://doi.org/10.1006/jsvi.2001.4092.
  25. Maheshwari, P. (2011), "Foundation-Soil Interaction", Geotechnical Engineering handbook. Ross Pub Inc, VA, USA.
  26. Nandwana, B.P. and Maiti, S. (1997), "Modeling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements", Eng. Fracture Mech., 58, 193-205. https://doi.org/10.1016/S0013-7944(97)00078-7.
  27. Ostachowicz, W.M. and Krawczuk, M. (1991), "Analysis of the effect of cracks on the natural frequencies of a cantilever beam", J. Sound Vib., 150, 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q.
  28. Patil, D.P. and Maiti, S.K. (2005), "Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements", J. Sound Vib., 281, 439-451. https://doi.org/10.1016/j.jsv.2004.03.035.
  29. Pedram, M., Esfandiari, A. and Khedmati, M.R. (2018), "Frequency domain damage detection of plate and shell structures by finite element model updating", Inverse Problems Sci. Eng., 26(1), 100-132. https://doi.org/10.1080/17415977.2017.1309398 .
  30. Petrone, G., Carzana, A., Ricci, F. and De Rosa, S. (2017), "Damage detection through structural intensity and vibration based techniques", Adv. Aircraft Spacecraft Sci., 4(6), 613-637. https://doi.org/10.12989/aas.2017.4.6.613.
  31. Robles, S.I. and Ortega, N.F. (2001), "Study of volumetric displacements of shells", J. International Assoc. Shell Spatial Struct., 42(137), 139-147.
  32. Robles, S.I., Ortega, N.F. and Orbanich, C.J. (2008), "Damage Detection in 2D Structures through Static Response", The Open Construct. Build. Technol. J., 2, 176-184. https://doi.org/10.2174/1874836800802010176
  33. Robles, S.I. and Ortega, N.F., (2011), "Damage Evaluation in Shells from Changes in Its Static Parameters", The Open Construct. Build. Technol. J., 5, 182-189. https://doi.org/10.2174/1874836801105010182
  34. Rosales, M. and Filipich, C. (2003), "An algebraic series method to solve strongly nonlinear oscillators", Proceedings of the ASME International Mechanical Engineering Congress, Washington, D.C. USA.
  35. Rosales, M.B., Filipich, C.P. and Buezas, F.S. (2009), "Crack detection in beam-like structures", Eng. Struct., 31(10), 2257-2264. https://doi.org/10.1016/j.asoc.2007.10.003.
  36. Rytter, A. (1993). "Vibration based inspection of Civil Engineering Structures", Ph. D. Dissertation, Aalborg University, Denmark.
  37. Schommer, S., Nguyen, V.H., Maas, S. and Zurbes, A. (2017), "Model updating for structural health monitoring using static and dynamic measurements", Procedia Eng., 199, 2146-2153. https://doi.org/10.1016/j.proeng.2017.09.156.
  38. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6.
  39. Xiang, J.W., Matsumoto, T., Long, J.Q. and Ma, G. (2013), "Identification of damage locations based on operating deflection shape", Nondestructive Testing and Evaluation, 28(2), 166-180. https://doi.org/10.1080/10589759.2012.716437.
  40. Yang, Z., Chen, X., Yu, J., Liu, R., Liu, Z. and He, Z. (2013), "A damage identification approach for plate structures based on frequency measurements", Nondestructive Testing and Evaluation, 28(4), 321-341. https://doi.org/10.1080/10589759.2013.801472.
  41. Zhang, J., Guo, S.L., Wu, Z.S. and Zhang, Q.Q. (2015), "Structural identification and damage detection through longgauge strain measurements", Eng. Struct., 99, 173-183. https://doi.org/10.1016/j.engstruct.2015.04.024.
  42. Zhao, Y., Noori, M. and Altabey, W.A. (2017), "Damage detection for a beam under transient excitation via three different algorithms", Struct. Eng. Mech., 64(6), 649-654. https://doi.org/10.12989/sem.2017.64.6.803.