References
- Artar, M. (2016a), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., Int. J., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733
- Artar, M. (2016b), "A comparative study on optimum design of multi element truss structures", Steel Compos. Struct., Int. J., 22(3), 521-535. https://doi.org/10.12989/scs.2016.22.3.521
- Artar, M. and Daloglu, A. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., Int. J., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503
- Cheng, W., Liu, F. and Li, L.J. (2013), "Size and Geometry Optimization of Trusses Using Teaching-Learning-Based Optimization", Int. J. Optim. Civil Eng., 3(3), 431-444.
- Dede, T. (2014), "Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures", KSCE J. Civil Eng., 18(6), 1759-1767. https://doi.org/10.1007/s12205-014-0553-8
- Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., Int. J., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163
- Farshchin, M.F., Camp, C.H. and Maniat, M. (2016), "Optimal design of truss structures for size and shape with frequency constraints using a collaborative optimization strategy", Expert Syst. Appl., 66, 203-218. https://doi.org/10.1016/j.eswa.2016.09.012
- Gomes, H.M. (2011), "Truss optimization with dynamic constraints using a particle swarm algorithm", Expert Syst. Appl., 38, 957-968. https://doi.org/10.1016/j.eswa.2010.07.086
- Grzywinski, M., Dede, T. and Ozdemir ,Y.I. (2019), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., Int. J., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047
- Kaveh, A. and Mahdavi, V.R. (2015), "Two-dimensional colliding bodies algorithm for optimal design of truss structures", Adv. Eng. Softw., 83, 70-79. https://doi.org/10.1016/j.advengsoft.2015.01.007
- Kaveh, A. and Zolghadr, A. (2012), "Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability", Comput. Struct., 102-103, 14-27. https://doi.org/10.1016/j.compstruc.2012.03.016
- Kaveh, A. and Zolghadr, A. (2014), "Democratic PSO for truss layout and size optimization with frequency constraints", Comput. Struct., 130, 10-21. https://doi.org/10.1016/j.compstruc.2013.09.002
- Lingyun, W., Mei, Z., Guangming, W. and Guang, M. (2004), "Truss optimization on shape and sizing with frequency constraints based on genetic algorithm", Computat. Mech., 35(5), 361-368. https://doi.org/10.1007/s00466-004-0623-8
- Rao, R.V. (2016), Teaching Learning Based Optimization Algorithm and its Engineering Applications, Springer.
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Sedaghati, R., Suleman, A. and Tabarrok, B. (2002), "Structural optimization with frequency constraints using the finite element force method", AIAA Journal, 40(2), 382-388. https://doi.org/10.2514/2.1657
- Tejani, G.G., Savsani, V.J. and Patel, V.K. (2016), "Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization", J. Comput. Des. Eng., 3(3), 226-249. https://doi.org/10.1016/j.jcde.2016.02.003
- Wang, D., Zhang, W.H. and Jiang, J.S. (2004), "Truss optimization on shape and sizing with frequency constraints", AIAA Journal, 42(3), 622-630. https://doi.org/10.2514/1.1711
Cited by
- Optimization of a composite beam for high-speed railroads vol.37, pp.4, 2019, https://doi.org/10.12989/scs.2020.37.4.493
- Predicting the splitting tensile strength of concrete using an equilibrium optimization model vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.081
- Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.805