DOI QR코드

DOI QR Code

Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory

  • Tahouneh, Vahid (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Naei, Mohammad Hasan (School of Mechanical Engineering, College of Engineering, University of Tehran) ;
  • Mashhadi, Mahmoud Mosavi (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2019.07.25
  • Accepted : 2019.10.21
  • Published : 2019.12.10

Abstract

This paper is motivated by the lack of studies in the technical literature concerning to vibration analysis of a single-layered graphene sheet (SLGS) with corner cutout based on the nonlocal elasticity model framework of classical Kirchhoff thin plate. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of the L-shape SLGS deflection field. Trimming technique is employed to create the cutout in geometry of L-shape plate. The L-shape plate is assumed to be Free (F) in the straight edges of cutout while any arbitrary boundary conditions are applied to the other four straight edges including Simply supported (S), Clamped (C) and Free (F). The Numerical studies are carried out to express the influences of the nonlocal parameter, cutout dimensions, boundary conditions and mode numbers on the variations of the natural frequencies of SLGS. It is precisely shown that these parameters have considerable effects on the free vibration behavior of the system. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems. This study serves as a benchmark for assessing the validity of numerical methods used to analyze the single-layered graphene sheet with corner cutout.

Keywords

References

  1. Abbassian, F., Dawswell, D.J. and Knowles, N.C. (1987), "Free Vibration Benchmarks. Atkins Engineering Sciences", Glasgow.
  2. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
  3. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., Int. J., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013
  4. Al-Sherbini, A.S., Bakr, M., Ghoneim, I. and Saad, M. (2017), "Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene", J. Adv. Res., 8(3), 209-215. https://doi.org/10.1016/j.jare.2017.01.004
  5. Ali, G.A.M., Makhlouf, S.A., Yusoff, M.M. and Chong, K.F. (2015), "Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes", Rev. Adv. Mater. Sci., 41(1), 35-43.
  6. Ali, M.A., Mondal, K., Wang, Y., Jiang, H., Mahal, N.K., Castellano, M.J., Sharma, A. and Dong, L. (2017), "In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors", Lab. Chip., 17(2), 274-285. https://doi.org/10.1039/C6LC01266C
  7. Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A., 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028
  8. Aristodemo, M. (1985), "A high-continuity finite element model for two dimensional elastic problems", Comput. Struct., 21(5), 987-993. https://doi.org/10.1016/0045-7949(85)90211-1
  9. Bilotta, A., Formica, G. and Turco, E. (2010), "Performance of a high-continuity finite element in three-dimensional elasticity", Int. J. Numer. Methods Biomed. Eng., 26(9), 1155-1175. https://doi.org/10.1002/cnm.1201
  10. Bui, T.Q. and Nguyen, M.N. (2011), "A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates", Comput. Struct., 89(3-4), 380-394. https://doi.org/10.1016/j.compstruc.2010.11.006
  11. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Phys. Rev. Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505
  12. Chu, L., Shi, J. and Souza de Cursi, E. (2018), "Vibration analysis of vacancy defected graphene sheets by monte carlo based finite element method", Nanomaterials, 8(7), 489. https://doi.org/10.3390/nano8070489
  13. Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V. and Rimini, E. (2009), "Ion irradiation and defect formation in single layer graphene", Carbon, 47(14), 3201-3207. https://doi.org/10.1016/j.carbon.2009.07.033
  14. Dastjerdi, S., Lot, M. and Jabbarzadeh, M. (2016), "The effect of vacant defect on bending analysis of graphene sheets based on the Mindlin nonlocal elasticity theory", Compos. Part B Eng., 98(1), 78-87. https://doi.org/10.1016/j.compositesb.2016.05.009
  15. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys, 54, 4703-4710. https://doi.org/10.1063/1.332803
  16. Fadaee, M. (2016), "Buckling analysis of a defective annular graphene sheet in elastic medium", Appl. Math. Model, 40(3), 1863-1872. https://doi.org/10.1016/j.apm.2015.09.029
  17. Guo, Y., Ruess, M. and Gurdal, Z. (2014), "A contact extended isogeometric layerwise approach for the buckling analysis of delaminated composites", Compos. Struct., 116(1), 55-66. https://doi.org/10.1016/j.compstruct.2014.05.006
  18. Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transf. Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569
  19. Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
  20. Hosseini Hashemi, S., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by visco pasternak medium", Compos. Part B-Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008
  21. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  22. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., Int. J., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419
  23. Kapoor, H. and Kapania, R. (2012), "Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates", Compos. Struct., 94(12), 3434-3447. https://doi.org/10.1016/j.compstruct.2012.04.028
  24. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
  25. Karami, B., Janghorban, M., Shahsavari, D. and Touns, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  26. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  27. Kiendl, J., Bletzinger, K.U., Linhard, J. and Wuchner, R. (2009), "Isogeometric shell analysis with Kirchhoff-Love elements", Comput. Method Appl. M., 198(49-52), 3902-3914. https://doi.org/10.1016/j.cma.2009.08.013
  28. Kim, H.J., Seo, Y.D. and Youn, S.K. (2010), "Isogeometric analysis with trimming technique for problems of arbitrary complex topology", Comput. Methods Appl. Mech. Engrg., 199(45-48), 2796-2812. https://doi.org/10.1016/j.cma.2010.04.015
  29. Kitipornchai, S., He, X.Q. and Liew, K.M. (2005), "Continuum model for the vibration of multilayered graphene sheets", Phys. Rev. B., 72(7), 075443. https://doi.org/10.1103/PhysRevB.72.075443
  30. Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT- and Graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
  31. Kuzhir, P., Volynets, N., Maksimenko, S., Kaplas, T. and Svirko, Y. (2013), "Multilayered graphene in Ka-band: Nanoscale coating for aerospace applications", J. Nanosci. Nanotechnol., 13(8), 5864-5867. https://doi.org/10.1166/jnn.2013.7551
  32. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  33. Le-Manh, T. and Lee, J. (2014), "Postbuckling of laminated composite plates using NURBS-based isogeometric analysis", Compos. Struct., 109, 286-293. https://doi.org/10.1016/j.compstruct.2013.11.011
  34. Le-Manh, T., Luu-Anh, T. and Lee, J. (2016), "Isogeometric analysis for flexural behavior of composite plates considering large deformation with small rotations", Mech. Adv. Mater. Struct., 23(3), 328-336. https://doi.org/10.1080/15376494.2014.981616
  35. Lim, C.W.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  36. Liu, G.R. (2003), Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, USA.
  37. Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241(5), 839-855. https://doi.org/10.1006/jsvi.2000.3330
  38. Malagu, M., Benvenuti, E. and Simone, A. (2012), "A finite element and b-spline methods for one-dimensional non-local elasticity", In: ECCOMAS 2012: 6th European Congress on computational methods in applied sciences and engineering, Vienna University of Technology, Vienna, Austria, September.
  39. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
  40. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809
  41. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B-Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
  42. Marina, P.E., Ali, G.A.M., See, L.M., Teo, E.Y.L., Ng, E.P. and Chong, K.F. (2016), "In situ growth of redox-active ironcentered nanoparticles on graphene sheets for specific capacitance enhancement", Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2016.02.006
  43. Martinez-Asencio, J. and Caturla, M.J. (2015), "Molecular dynamics simulations of defect production in graphene by carbon irradiation", Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms, 352, 225-228. https://doi.org/10.1016/j.nimb.2014.12.010
  44. Mirakhory, M., Khatibi, M.M. and Sadeghzadeh, S. (2018), "Vibration analysis of defected and pristine triangular single-layer graphene nanosheets", Curr. Appl. Phys., 18(11), 1327-1337. https://doi.org/10.1016/j.cap.2018.07.014
  45. Mirzaei, M. and Kiani, Y. (2017), "Isogeometric Thermal buckling Analysis of Temperature Dependent FG Graphene Reinforced Laminated Plates using NURBS Formulation", Compos. Struct., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057
  46. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with Graphene", Steel Compos. Struct., Int. J., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529
  47. Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Engrg., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021
  48. Norouzzadeh, A. and Ansari, R. (2018), "Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects", Thin-Wall. Struct., 127, 354-372. https://doi.org/10.1016/j.tws.2017.11.040
  49. Othman, I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
  50. Piegl, L. and Tiller, W. (1997), The NURBS Book, (Monographs in Visual Communication), Springer-Verlag, New York, USA.
  51. Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004
  52. Rajasekaran, G., Narayanan, P. and Parashar, A. (2016), "Effect of point and line defects on mechanical and thermal properties of graphene", Crit. Rev. Solid State Mater. Sci., 41(1), 47-71. https://doi.org/10.1080/10408436.2015.1068160
  53. Ribeiro, P. and Chuaqui, T.R.C. (2019), "Non-linear modes of vibration of single-layer non-local graphene sheets", Int. J. Mech. Sci., 150, 727-743. https://doi.org/10.1016/j.ijmecsci.2018.10.068
  54. Roh, H.Y. and Cho, M. (2004), "The application of geometrically exact shell elements to B-spline surfaces", Comput. Method Appl. M., 193(23-26), 2261-2299. https://doi.org/10.1016/j.cma.2004.01.019
  55. Rouhi, S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Phys. E. Low-Dimensional Syst. Nanostruct., 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020
  56. Sadeghi, M. and Naghdabadi, R. (2010), "Nonlinear vibrational analysis of single-layer graphene sheets", Nanotechnology, 21(10), 105705. https://doi.org/10.1088/0957-4484/21/10/105705
  57. Sakhaee-Pour, A. (2009), "Elastic buckling of single-layered graphene sheet", Comput. Mater. Sci., 45(2), 266-270. https://doi.org/10.1016/j.commatsci.2008.09.024
  58. Sakhaee-Pour, A., Ahmadian, M.T. and Naghdabadi, R. (2008), "Vibrational analysis of single-layered graphene sheets", Nanotechnology, 19(8), 85702. https://doi.org/10.1088/0957-4484/19/8/085702
  59. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
  60. Siddique, J.A., Attia, N.F. and Geckeler, K.E. (2015), "Polymer nanoparticles as a tool for the exfoliation of graphene sheets", Mater. Lett., 158(1), 186-189. https://doi.org/10.1016/j.matlet.2015.05.134
  61. Sobhy, M. (2014), "Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium", Phys. E. Low-Dimens. Syst. Nanostruct., 56, 400-409. https://doi.org/10.1016/j.physe.2013.10.017
  62. Soleimani, A., Naei, M.H. and Mashhadi, M.M. (2017), "Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications", Microsyst. Technol., 23(7), 2859-2871. https://doi.org/10.1007/s00542-016-3098-6
  63. Soleimani A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of Graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517
  64. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  65. Stan, G., Ciobanu, C.V., Parthangal, P.M. and Cook, R.F. (2007), "Diameter-dependent radial and tangential elastic moduli of ZnO nanowires", Nano Letters, 7(12), 3691-3697. https://doi.org/10.1021/nl071986e
  66. Sun, S., Wang, C., Chen, M. and Zheng, J. (2013), "A novel method to control atomic defects in graphene sheets by selective surface reactions", Appl. Surf. Sci., 283, 566-570. https://doi.org/10.1016/j.apsusc.2013.06.146
  67. Tasis, D., Papagelis, K., Spiliopoulos, P. and Galiotis, C. (2013), "Efficient exfoliation of graphene sheets in binary solvents", Mater. Lett., 94, 47-50. https://doi.org/10.1016/j.matlet.2012.12.027
  68. Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Methods Eng., 91, 571-603. https://doi.org/10.1002/nme.4282
  69. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859
  70. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), E102-E126. https://doi.org/10.1002/pc.24520
  71. Tran, L.V., Lee, J., Nguyen-Van, H., Nguyen-Xuan, H. and Wahab, M.A. (2015), "Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory", Int. J. Non-Linear Mech., 72, 42-52. https://doi.org/10.1016/j.ijnonlinmec.2015.02.007
  72. Tran, L.V., Phung-Van, P., Lee, J., Wahab, M.A. and Nguyen-Xuan, H. (2016), "Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates", Compos. Struct., 140, 655-667. https://doi.org/10.1016/j.compstruct.2016.01.001
  73. Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
  74. Wei, Y., Wang, B., Wu, J., Yang, R. and Dunn, M.L. (2012), "Bending rigidity and Gaussian bending stiffness of single-layered graphene", Nano Lett., 13(1), 26-30. https://doi.org/10.1021/nl303168w
  75. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  76. Yu, T.T., Yin, S., Bui, T.Q. and Hirose, S. (2015), "A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates", Finite Elem. Anal. Des., 96, 1-10. https://doi.org/10.1016/j.finel.2014.11.003
  77. Zhang, Y., Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2015), "Engineering Analysis with Boundary Elements Nonlocal continuum model for vibration of single-layered graphene sheets based on the element-free kp-Ritz method", Eng. Anal. Bound. Elem., 56, 90-97. https://doi.org/10.1016/j.enganabound.2015.01.020

Cited by

  1. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.533