References
- Abdolahnejad, A., Ebrahimi, A. and Jafari, N. (2014), "Application of Iranian natural zeolite and blast furnace slag as slow sand filters media for water softening", Int. J. Environ. Health Eng., 3(2), 58-63.
-
Agrawal, S.G., King, K.W., Fischer, E.N. and Woner, D.N. (2011a), "
$PO{_4}^{3-}$ removal by and permeability of industrial byproducts and minerals: Granulated blast furnace slag, cement Kiln dust, coconut shell activated carbon, silica sand, and Zeolite", Water Air Soil Pollut., 219(1-4), 91-101. https://doi.org/10.1007/s11270-010-0686-4. - Agrawal, S.G., King, K.W., Moore, J.F., Levison, P. and McDonald, J. (2011b), "Use of industrial byproducts to filter phosphorus and pesticides in golf green drainage water", J. Environ. Quality, 40(4), 1273-1280. https://doi.org/10.2134/jeq2010.0390
- AL-Othman, Z.A., Ali, R. and Mu. Naushad (2012), "Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies", Chem. Eng. J., 184, 238-247. https://doi.org/10.1016/j.cej.2012.01.048.
- Anjali, M.S., Shrihari, S. and Sunil B.M. (2019), "Experimental studies of slag filter for drinking water treatment", Environ. Technol. Innov., 15, 100418. https://doi.org/10.1016/j.eti.2019.100418.
- Asish, D.K., Singh, B. and Verma, S.K. (2016), "The effect of attack of chloride & sulphate on ground granulated blast furnace slag concrete", Adv. Concrete Construct., 4(2), 107-121. http://dx.doi.org/10.12989/acc.2016.4.2.107.
- Ballantine, D.J. and Tanner, C.C. (2010), "Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review", New Zealand J. Agricult. Res., 53(1), 71-95. https://doi.org/10.1080/00288231003685843.
- Blanco, I., Molle, P., de Miera, L.E.S. and Ansola, G. (2016), "Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands", Water Res., 89, 355-365. https://doi.org/10.1016/j.watres.2015.11.064.
- Bowden, L.I., Johnson, K.L., Jarvis, A.P., Robinson, H., Ghazireh, N. and Younger, P.L. (2006), "The use of basic oxygen steel furnace slag (BOS) as a high surface area media for the removal of iron from circum neutral mine waters", Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, Missouri, U.S.A., March.
- Calder, N., Anderson, B.C. and Martin, D.G. (2006), "Field investigation of advanced filtration for phosphorus removal from constructed treatment wetland effluents", Environ. Technol., 27(10), 1063-1071. https://doi.org/10.1080/09593332708618723.
- Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba G.J. and Naushad, M. (2017), "Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review", J. Environ. Chem. Eng., 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.
- Das, B., Prakash, S., Reddy, P.S.R. and Misra, V.N. (2007), "An overview of utilization of slag and sludge from steel industries", Resour. Conserv. Recycl., 50(1), 40-57. https://doi.org/10.1016/j.resconrec.2006.05.008.
- Dimitrova, S.V. and Mehanjiev, D.R. (2000), "Interaction of blast-furnace slag with heavy metal ions in water solutions", Water Res., 34(6), 1957-1961. https://doi.org/10.1016/S0043-1354(99)00328-0.
- El-Taweel, G.E. and Ali, G.H. (2000), "Evaluation of roughing and slow sand filters for water treatment", Water Air Soil Pollut., 120(1), 21-28. https://doi.org/10.1023/A:1005252900175.
- Environment Agency UK (2007), "A technical report on the manufacturing of blast furnace slag and material status in UK", Waste & Resources Action Programme.
- Feng, Y., Yu, Y., Qiu, L. and Wan, X. (2012), "Performance of water quenched slag particles (WQSP) for municipal wastewater treatment in a biological aerated filter (BAF)", Biomass Bioenergy, 45, 280-287. https://doi.org/10.1016/j.biombioe.2012.06.019.
- Gao, H., Song, Z., Zhang, W., Yang, X., Wang, X. and Wang, D. (2017), "Synthesis of highly effective absorbnets with aste quenching blast furnace slag to remove Methyl Orange from aqueous solution", J. Environ. Sci. China, 53, 68-77. https://doi.org/10.1016/j.jes.2016.05.014
- Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Xiong, J. and Zhao, Y. (2014), "Comparison of slags and gravels as substrates in horizontal subsurface flow constructed wetlands for polluted river water treatment", J. Water Sustain., 4(4), 247-258.
- Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y. and Xiong, J. (2015), "Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment", Environ. Sci. Pollut. Res., 22(17), 12982-12991. https://doi.org/10.1007/s11356-015-4573-9.
- Gong, G., Ye, S., Tian, Y., Wang, Q., Ni, J. and Chen, Y. (2009), "Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution", J. Hazard. Mater., 166(2), 714-719. https://doi.org/10.1016/j.jhazmat.2008.11.077.
- Hallberg, M. and Renman, G. (2008), "Removal of heavy metals from road runoff by filtration in granular slag columns", Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, U.K.
- Haynes, R.J. (2015), "Use of industrial wastes as media in constructed wetlands and filter beds-prospects for removal of phosphate and metals from wastewater streams", Crit. Rev. Environ. Sci. Technol., 45(10), 1041-1103. https://doi.org/10.1080/10643389.2014.924183.
- Hedstrom, A. and Rastas, L. (2006), "Methodological aspects of using blast furnace slag for wastewater phosphorus removal", J. Environ. Eng., 132(11), 1431-1438. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:11(1431).
- Hizon-Fradejas, A.B., Nakano, Y., Nakai, S., Nishijima, W. and Okada, M. (2009). "Evaluation of blast furnace slag as basal media for eelgrass bed", J. Hazard. Mater., 166(2), 1560-1566. https://doi.org/10.1016/j.jhazmat.2008.12.037.
- Horii, K., Tsutsumi, N., Kitano, Y. and Kato, T. (2013), "Processing and reusing technologies for steelmaking slag", Nippon Steel Technical Report, 104,123-129.
- Hylander, L.D., Kietlinska, A., Renman, G. and Siman, G. (2006), "Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production", Bioresour. Technol., 97(7), 914-921. https://doi.org/10.1016/j.biortech.2005.04.026.
- Indian Bureau of Mines (2018), Indian Minerals Yearbook 2018 (Part- II: Metals & Alloys), Slag- Iron and Steel (Final Release), Government of India, Ministry of Mines, Indian Bureau of Mines, India.
- IS: 12089 (1987), Indian Standard Specification for Granulated Slag for the Manufacture of Portland Slag Cement.
- Isawa, T. (2013), "Update of iron and steel slag in Japan and current developments for valorisation", Proceedings of the 3rd International Slag Valorisation Symposium, Leuven, Belgium.
- Johansson, L. (1999), "Industrial by-products and natural substrata as phosphorus sorbents", Environ. Technol., 20(3), 309-316. https://doi.org/10.1080/09593332008616822.
- Johansson, L. and Gustafsson, J.P. (2000), "Phosphate removal using blast furnace slags and opoka-mechanisms", Water Res., 34(1), 259-265. https://doi.org/10.1016/S0043-1354(99)00135-9.
- Johansson, W.L. (2010), "The use of blast furnace slag for removal of phosphorus from wastewater in Sweden- A review", Water, 2(4), 826-837. https://doi.org/10.3390/w2040826.
- Karczmarczyk, A. (2004), "Phosphorus removal from domestic wastewater in horizontal subsurface flow constructed wetland after 8 years of operation- a case study", J. Environ. Eng. Landscape Manage., 12(4), 126-131. https://doi.org/10.1080/16486897.2004.9636833.
- Kaya, Z. (2016), "Effect of slag on stabilization of sewage sludge and organic soil", Geomech. Eng., 10(5), 689-707. https://doi.org/10.12989/gae.2016.10.5.689.
- Kietlinska, A. and Renman, G. (2005), "An evaluation of reactive filter media for treating landfill leachate", Chemosphere, 61(7), 933-940. https://doi.org/10.1016/j.chemosphere.2005.03.036.
- Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2004), "Treatment efficiencies of the vertical flow pilot-scale constructed wetlands for domestic wastewater treatment", Turk. J. Eng. Environ. Sci., 28(5), 333-344.
- Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2005), "Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey", Ecol. Eng., 24(3), 185-198. https://doi.org/10.1016/j.ecoleng.2004.10.002.
- Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2007), "Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application", Bioresour. Technol., 98(11), 2089-2101. https://doi.org/10.1016/j.biortech.2006.08.027.
- Koupai, J.A., Nejad, S.S., Mostafazadeh-Fard, S. and Behfarnia, K. (2015), "Reduction of urban storm-runoff pollution using porous concrete containing iron slag adsorbent", J. Environ. Eng., 142(2), 04015072. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001025.
- Lewis, D.W. (1982), "Properties and uses of iron and steel slags", National Slag Association Report MF 182-6, Presentation at Symposium on Slag, South Africa.
- Li, G. and Guo, M. (2014), "Current development of slag valorisation in China", Waste Biomass Valor., 5(3), 317-325. https://doi.org/10.1007/s12649-014-9294-7.
- Lim, J.W., Chew, L.H., Choong, T.S., Tezara, C. and Yazdi, M.H. (2016), "Overview of steel slag application and utilization", MATEC Web of Conferences, EDP Sciences, 74, 00026.
- Lu, S.G., Bai, S.Q. and Shan, H.D. (2008), "Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag", J. Zhejiang Univ. Sci. A, 9(1), 125-132. https://doi.org/10.1631/jzus.A071272.
- Mercado-Borrayo, B.M., Gonzalez-Chavez, J. L., Ramirez-Zamora, R.M. and Schouwenaars, R. (2018), "Valorization of metallurgical slag for the treatment of water pollution: An emerging technology for resource conservation and re-utilization", J. Sustain. Metall., 4(1), 50-67. https://doi.org/10.1007/s40831-018-0158-4.
- Naushad, M. (2014), "Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium", Chem. Eng. J., 235, 100-108. https://doi.org/10.1016/j.cej.2013.09.013.
- Naushad, M. (2014), "Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium", Chem. Eng. J., 235, 100-108. https://doi.org/10.1016/j.cej.2013.09.013.
- Naushad, M. and AL-Othman, Z.A. (2015), "Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation", Desalin. Water Treat., 53, 2158-2166. https://doi.org/10.1080/19443994.2013.862744.
- Naushad, M., AL-Othman, Z.A. and Islam, M. (2013), "Adsorption of cadmium ion using a new composite cationexchanger polyaniline Sn(IV) silicate: Kinetics, thermodynamic and isotherm studies", Int. J. Environ. Sci. Technol., 10, 567-578. https://doi.org/10.1007/s13762-013-0189-0.
- Nehrenheim, E. and Gustafsson, J.P. (2008), "Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments", Bioresour. Technol., 99(6), 1571-1577. https://doi.org/10.1016/j.biortech.2007.04.017.
- Nehrenheim, E., Waara, S. and Westholm, L.J. (2008), "Metal retention on pine bark and blast furnace slag-On-site experiment for treatment of low strength landfill leachate", Bioresour. Technol., 99(5), 998-1005. https://doi.org/10.1016/j.biortech.2007.03.006.
- Nguyen, T.C., Loganathan, P., Nguyen, T.V., Kandasamy, J., Naidu, R. and Vigneswaran, S. (2018), "Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash", Environ. Sci. Pollut. Res., 25(21), 20430-20438. https://doi.org/10.1007/s11356-017-9610-4.
- Nilsson, C., Renman, G., Westholm, L.J., Renman, A. and Drizo, A. (2013), "Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials", Water Res., 47(16), 6289-6297. https://doi.org/10.1016/j.watres.2013.08.001.
- O'Kelly, B.C. (2008), "Geo-engineering properties of granulated blast furnace slag", Proceedings of the Innovative Geotechnical Engineering, International Conference on Geotechnical Engineering, Tunis, Tunisia, March.
- Oguz, E. (2004), "Removal of phosphate from aqueous solution with blast furnace slag", J. Hazard. Mater., 114(1), 131-137. https://doi.org/10.1016/j.jhazmat.2004.07.010.
- Patra, R.K. and Mukharjee, B.B. (2017), "Properties of concrete incorporating granulated blast furnace slag as fine aggregate", Adv. Concrete Construct., 5(5), 437-450. https://doi.org/10.12989/acc.2017.5.5.437.
- Patra, R.K. and Mukharjee, B.B. (2018), "Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar", Adv. Concrete Construct., 6(6), 611-629. https://doi.org/10.12989/acc.2018.6.6.611.
- Pratt, C., Shilton, A., Haverkamp, R.G. and Pratt, S. (2009), "Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater", Water Res., 43(2), 277-282. https://doi.org/10.1016/j.watres.2008.10.020.
- Pratt, C., Shilton, A., Haverkamp, R.G. and Pratt, S. (2011), "Chemical techniques for pretreating and regenerating active slag filters for improved phosphorus removal", Environ. Technol., 32(10), 1053-1062. https://doi.org/10.1080/09593330.2010.525749.
- Pratt, C., Shilton, A., Pratt, S., Haverkamp, R. G. and Bolan, N.S. (2007), "Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent", Environ. Sci. Technol., 41(9), 3296-3301. https://doi.org/10.1021/es062496b.
- Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O. and Zak, M.A. (2000), "Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags", Environ. Sci. Technol., 34(8), 1576-1582. https://doi.org/10.1021/es9906002.
- Riefler, G. (2007), "Use of fluidized bed slag reactors for passive treatment of acid mine drainage". Water Resources Center, Annual Technical Report, FY 2007.
- Saeed, T., Afrin, R., Al Muyeed, A. and Sun, G. (2012), "Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh", Chemosphere, 88(9), 1065-1073. https://doi.org/10.1016/j.chemosphere.2012.04.055
- Shilton, A., Chen, L., Elemetri, I., Pratt, C. and Pratt, S. (2013), "Active slag filters: rapid assessment of phosphorus removal efficiency from effluent as a function of retention time", Environmental Technology, 34(2), 195-200. https://doi.org/10.1080/09593330.2012.689365
- Shilton, A.N., Elmetri, I., Drizo, A., Pratt, S., Haverkamp, R.G. and Bilby, S.C. (2006), "Phosphorus removal by an 'active'slag filter-a decade of full scale experience", Water Res., 40(1), 113-118. https://doi.org/10.1016/j.watres.2005.11.002.
- Singh, N.B., Nagpal G. and Agrawal S. (2018), "Water purification by using adsorbents: A review", Environ. Technol. Innov., 11, 187-240. https://doi.org/10.1016/j.eti.2018.05.006.
- Srivastava, S.K., Gupta, V.K. and Mohan, D. (1997), "Removal of lead and chromium by activated slag-a blast-furnace waste", J. Environ. Eng., 123(5), 461-468. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461).
- Valero, M.C., Johnson, M., Mather, T. and Mara, D.D. (2009), "Enhanced phosphorus removal in a waste stabilization pond system with blast furnace slag filters", Desalin. Water Treat., 4(1-3), 122-127. https://doi.org/10.5004/dwt.2009.366/
- Yasipourtehrani, S., Strezov, V. and Evans, T. (2019), "Investigation of phosphate removal capability of blast furnace slag in wastewater treatment", Scientific Reports, 9, 7498. https://doi.org/10.1038/s41598-019-43896-y.
- Zhang, M., Yang, C., Zhao, M., Yang, K., Shen, R. and Zheng, Y. (2017), "Immobilization potential of Cr (VI) in sodium hydroxide activated slag pastes", J. Hazard. Mater., 321, 281-289. https://doi.org/10.1016/j.jhazmat.2016.09.019.
- Zuo, M., Renman, G., Gustafsson, J.P. and Klysubun, W. (2018), "Dual slag filters for enhanced phosphorus removal from domestic wastewater: Performance and mechanisms", Environ. Sci. Pollut. Res., 25, 7391-7400. https://doi.org/10.1007/s11356-017-0925-y.