DOI QR코드

DOI QR Code

Potential valorisation of ferrous slag in the treatment of water and wastewater: A review

  • Anjali, M.S. (Department of Civil Engineering, L.B.S. College of Engineering) ;
  • Shrihari, S. (Department of Civil Engineering, National Institute of Technology Karnataka) ;
  • Sunil, B.M. (Department of Civil Engineering, National Institute of Technology Karnataka)
  • Received : 2018.05.09
  • Accepted : 2019.10.11
  • Published : 2019.09.25

Abstract

The generation of ferrous slag, an industrial by-product from the iron ore industry, results in serious environmental problems. The chemical compositions indicate 30-34% SiO2, 30-34% CaO, 18-22% Al2O3 and 0.5-0.6% Fe2O3. The specific gravity, moisture content and pH are in the range of 1.3-1.65, 9.1-10% and 8.5-9.0 respectively. The major part of the slag is composed of sand-size particles. The problems of disposal of slag could be minimized by considering its use in various environmental engineering applications providing additional value to the by-product. This paper mainly focuses on the potential utilization and valorisation of ferrous slag in both water and wastewater treatments. It is effective for the treatment of water and wastewater containing nutrients, heavy metals and polluted river/stormwater.

Keywords

References

  1. Abdolahnejad, A., Ebrahimi, A. and Jafari, N. (2014), "Application of Iranian natural zeolite and blast furnace slag as slow sand filters media for water softening", Int. J. Environ. Health Eng., 3(2), 58-63.
  2. Agrawal, S.G., King, K.W., Fischer, E.N. and Woner, D.N. (2011a), "$PO{_4}^{3-}$ removal by and permeability of industrial byproducts and minerals: Granulated blast furnace slag, cement Kiln dust, coconut shell activated carbon, silica sand, and Zeolite", Water Air Soil Pollut., 219(1-4), 91-101. https://doi.org/10.1007/s11270-010-0686-4.
  3. Agrawal, S.G., King, K.W., Moore, J.F., Levison, P. and McDonald, J. (2011b), "Use of industrial byproducts to filter phosphorus and pesticides in golf green drainage water", J. Environ. Quality, 40(4), 1273-1280. https://doi.org/10.2134/jeq2010.0390
  4. AL-Othman, Z.A., Ali, R. and Mu. Naushad (2012), "Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies", Chem. Eng. J., 184, 238-247. https://doi.org/10.1016/j.cej.2012.01.048.
  5. Anjali, M.S., Shrihari, S. and Sunil B.M. (2019), "Experimental studies of slag filter for drinking water treatment", Environ. Technol. Innov., 15, 100418. https://doi.org/10.1016/j.eti.2019.100418.
  6. Asish, D.K., Singh, B. and Verma, S.K. (2016), "The effect of attack of chloride & sulphate on ground granulated blast furnace slag concrete", Adv. Concrete Construct., 4(2), 107-121. http://dx.doi.org/10.12989/acc.2016.4.2.107.
  7. Ballantine, D.J. and Tanner, C.C. (2010), "Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review", New Zealand J. Agricult. Res., 53(1), 71-95. https://doi.org/10.1080/00288231003685843.
  8. Blanco, I., Molle, P., de Miera, L.E.S. and Ansola, G. (2016), "Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands", Water Res., 89, 355-365. https://doi.org/10.1016/j.watres.2015.11.064.
  9. Bowden, L.I., Johnson, K.L., Jarvis, A.P., Robinson, H., Ghazireh, N. and Younger, P.L. (2006), "The use of basic oxygen steel furnace slag (BOS) as a high surface area media for the removal of iron from circum neutral mine waters", Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, Missouri, U.S.A., March.
  10. Calder, N., Anderson, B.C. and Martin, D.G. (2006), "Field investigation of advanced filtration for phosphorus removal from constructed treatment wetland effluents", Environ. Technol., 27(10), 1063-1071. https://doi.org/10.1080/09593332708618723.
  11. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba G.J. and Naushad, M. (2017), "Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review", J. Environ. Chem. Eng., 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.
  12. Das, B., Prakash, S., Reddy, P.S.R. and Misra, V.N. (2007), "An overview of utilization of slag and sludge from steel industries", Resour. Conserv. Recycl., 50(1), 40-57. https://doi.org/10.1016/j.resconrec.2006.05.008.
  13. Dimitrova, S.V. and Mehanjiev, D.R. (2000), "Interaction of blast-furnace slag with heavy metal ions in water solutions", Water Res., 34(6), 1957-1961. https://doi.org/10.1016/S0043-1354(99)00328-0.
  14. El-Taweel, G.E. and Ali, G.H. (2000), "Evaluation of roughing and slow sand filters for water treatment", Water Air Soil Pollut., 120(1), 21-28. https://doi.org/10.1023/A:1005252900175.
  15. Environment Agency UK (2007), "A technical report on the manufacturing of blast furnace slag and material status in UK", Waste & Resources Action Programme.
  16. Feng, Y., Yu, Y., Qiu, L. and Wan, X. (2012), "Performance of water quenched slag particles (WQSP) for municipal wastewater treatment in a biological aerated filter (BAF)", Biomass Bioenergy, 45, 280-287. https://doi.org/10.1016/j.biombioe.2012.06.019.
  17. Gao, H., Song, Z., Zhang, W., Yang, X., Wang, X. and Wang, D. (2017), "Synthesis of highly effective absorbnets with aste quenching blast furnace slag to remove Methyl Orange from aqueous solution", J. Environ. Sci. China, 53, 68-77. https://doi.org/10.1016/j.jes.2016.05.014
  18. Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Xiong, J. and Zhao, Y. (2014), "Comparison of slags and gravels as substrates in horizontal subsurface flow constructed wetlands for polluted river water treatment", J. Water Sustain., 4(4), 247-258.
  19. Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y. and Xiong, J. (2015), "Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment", Environ. Sci. Pollut. Res., 22(17), 12982-12991. https://doi.org/10.1007/s11356-015-4573-9.
  20. Gong, G., Ye, S., Tian, Y., Wang, Q., Ni, J. and Chen, Y. (2009), "Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution", J. Hazard. Mater., 166(2), 714-719. https://doi.org/10.1016/j.jhazmat.2008.11.077.
  21. Hallberg, M. and Renman, G. (2008), "Removal of heavy metals from road runoff by filtration in granular slag columns", Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, U.K.
  22. Haynes, R.J. (2015), "Use of industrial wastes as media in constructed wetlands and filter beds-prospects for removal of phosphate and metals from wastewater streams", Crit. Rev. Environ. Sci. Technol., 45(10), 1041-1103. https://doi.org/10.1080/10643389.2014.924183.
  23. Hedstrom, A. and Rastas, L. (2006), "Methodological aspects of using blast furnace slag for wastewater phosphorus removal", J. Environ. Eng., 132(11), 1431-1438. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:11(1431).
  24. Hizon-Fradejas, A.B., Nakano, Y., Nakai, S., Nishijima, W. and Okada, M. (2009). "Evaluation of blast furnace slag as basal media for eelgrass bed", J. Hazard. Mater., 166(2), 1560-1566. https://doi.org/10.1016/j.jhazmat.2008.12.037.
  25. Horii, K., Tsutsumi, N., Kitano, Y. and Kato, T. (2013), "Processing and reusing technologies for steelmaking slag", Nippon Steel Technical Report, 104,123-129.
  26. Hylander, L.D., Kietlinska, A., Renman, G. and Siman, G. (2006), "Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production", Bioresour. Technol., 97(7), 914-921. https://doi.org/10.1016/j.biortech.2005.04.026.
  27. Indian Bureau of Mines (2018), Indian Minerals Yearbook 2018 (Part- II: Metals & Alloys), Slag- Iron and Steel (Final Release), Government of India, Ministry of Mines, Indian Bureau of Mines, India.
  28. IS: 12089 (1987), Indian Standard Specification for Granulated Slag for the Manufacture of Portland Slag Cement.
  29. Isawa, T. (2013), "Update of iron and steel slag in Japan and current developments for valorisation", Proceedings of the 3rd International Slag Valorisation Symposium, Leuven, Belgium.
  30. Johansson, L. (1999), "Industrial by-products and natural substrata as phosphorus sorbents", Environ. Technol., 20(3), 309-316. https://doi.org/10.1080/09593332008616822.
  31. Johansson, L. and Gustafsson, J.P. (2000), "Phosphate removal using blast furnace slags and opoka-mechanisms", Water Res., 34(1), 259-265. https://doi.org/10.1016/S0043-1354(99)00135-9.
  32. Johansson, W.L. (2010), "The use of blast furnace slag for removal of phosphorus from wastewater in Sweden- A review", Water, 2(4), 826-837. https://doi.org/10.3390/w2040826.
  33. Karczmarczyk, A. (2004), "Phosphorus removal from domestic wastewater in horizontal subsurface flow constructed wetland after 8 years of operation- a case study", J. Environ. Eng. Landscape Manage., 12(4), 126-131. https://doi.org/10.1080/16486897.2004.9636833.
  34. Kaya, Z. (2016), "Effect of slag on stabilization of sewage sludge and organic soil", Geomech. Eng., 10(5), 689-707. https://doi.org/10.12989/gae.2016.10.5.689.
  35. Kietlinska, A. and Renman, G. (2005), "An evaluation of reactive filter media for treating landfill leachate", Chemosphere, 61(7), 933-940. https://doi.org/10.1016/j.chemosphere.2005.03.036.
  36. Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2004), "Treatment efficiencies of the vertical flow pilot-scale constructed wetlands for domestic wastewater treatment", Turk. J. Eng. Environ. Sci., 28(5), 333-344.
  37. Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2005), "Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey", Ecol. Eng., 24(3), 185-198. https://doi.org/10.1016/j.ecoleng.2004.10.002.
  38. Korkusuz, E.A., Beklioglu, M. and Demirer, G.N. (2007), "Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application", Bioresour. Technol., 98(11), 2089-2101. https://doi.org/10.1016/j.biortech.2006.08.027.
  39. Koupai, J.A., Nejad, S.S., Mostafazadeh-Fard, S. and Behfarnia, K. (2015), "Reduction of urban storm-runoff pollution using porous concrete containing iron slag adsorbent", J. Environ. Eng., 142(2), 04015072. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001025.
  40. Lewis, D.W. (1982), "Properties and uses of iron and steel slags", National Slag Association Report MF 182-6, Presentation at Symposium on Slag, South Africa.
  41. Li, G. and Guo, M. (2014), "Current development of slag valorisation in China", Waste Biomass Valor., 5(3), 317-325. https://doi.org/10.1007/s12649-014-9294-7.
  42. Lim, J.W., Chew, L.H., Choong, T.S., Tezara, C. and Yazdi, M.H. (2016), "Overview of steel slag application and utilization", MATEC Web of Conferences, EDP Sciences, 74, 00026.
  43. Lu, S.G., Bai, S.Q. and Shan, H.D. (2008), "Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag", J. Zhejiang Univ. Sci. A, 9(1), 125-132. https://doi.org/10.1631/jzus.A071272.
  44. Mercado-Borrayo, B.M., Gonzalez-Chavez, J. L., Ramirez-Zamora, R.M. and Schouwenaars, R. (2018), "Valorization of metallurgical slag for the treatment of water pollution: An emerging technology for resource conservation and re-utilization", J. Sustain. Metall., 4(1), 50-67. https://doi.org/10.1007/s40831-018-0158-4.
  45. Naushad, M. (2014), "Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium", Chem. Eng. J., 235, 100-108. https://doi.org/10.1016/j.cej.2013.09.013.
  46. Naushad, M. (2014), "Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium", Chem. Eng. J., 235, 100-108. https://doi.org/10.1016/j.cej.2013.09.013.
  47. Naushad, M. and AL-Othman, Z.A. (2015), "Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation", Desalin. Water Treat., 53, 2158-2166. https://doi.org/10.1080/19443994.2013.862744.
  48. Naushad, M., AL-Othman, Z.A. and Islam, M. (2013), "Adsorption of cadmium ion using a new composite cationexchanger polyaniline Sn(IV) silicate: Kinetics, thermodynamic and isotherm studies", Int. J. Environ. Sci. Technol., 10, 567-578. https://doi.org/10.1007/s13762-013-0189-0.
  49. Nehrenheim, E. and Gustafsson, J.P. (2008), "Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments", Bioresour. Technol., 99(6), 1571-1577. https://doi.org/10.1016/j.biortech.2007.04.017.
  50. Nehrenheim, E., Waara, S. and Westholm, L.J. (2008), "Metal retention on pine bark and blast furnace slag-On-site experiment for treatment of low strength landfill leachate", Bioresour. Technol., 99(5), 998-1005. https://doi.org/10.1016/j.biortech.2007.03.006.
  51. Nguyen, T.C., Loganathan, P., Nguyen, T.V., Kandasamy, J., Naidu, R. and Vigneswaran, S. (2018), "Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash", Environ. Sci. Pollut. Res., 25(21), 20430-20438. https://doi.org/10.1007/s11356-017-9610-4.
  52. Nilsson, C., Renman, G., Westholm, L.J., Renman, A. and Drizo, A. (2013), "Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials", Water Res., 47(16), 6289-6297. https://doi.org/10.1016/j.watres.2013.08.001.
  53. O'Kelly, B.C. (2008), "Geo-engineering properties of granulated blast furnace slag", Proceedings of the Innovative Geotechnical Engineering, International Conference on Geotechnical Engineering, Tunis, Tunisia, March.
  54. Oguz, E. (2004), "Removal of phosphate from aqueous solution with blast furnace slag", J. Hazard. Mater., 114(1), 131-137. https://doi.org/10.1016/j.jhazmat.2004.07.010.
  55. Patra, R.K. and Mukharjee, B.B. (2017), "Properties of concrete incorporating granulated blast furnace slag as fine aggregate", Adv. Concrete Construct., 5(5), 437-450. https://doi.org/10.12989/acc.2017.5.5.437.
  56. Patra, R.K. and Mukharjee, B.B. (2018), "Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar", Adv. Concrete Construct., 6(6), 611-629. https://doi.org/10.12989/acc.2018.6.6.611.
  57. Pratt, C., Shilton, A., Haverkamp, R.G. and Pratt, S. (2009), "Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater", Water Res., 43(2), 277-282. https://doi.org/10.1016/j.watres.2008.10.020.
  58. Pratt, C., Shilton, A., Haverkamp, R.G. and Pratt, S. (2011), "Chemical techniques for pretreating and regenerating active slag filters for improved phosphorus removal", Environ. Technol., 32(10), 1053-1062. https://doi.org/10.1080/09593330.2010.525749.
  59. Pratt, C., Shilton, A., Pratt, S., Haverkamp, R. G. and Bolan, N.S. (2007), "Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent", Environ. Sci. Technol., 41(9), 3296-3301. https://doi.org/10.1021/es062496b.
  60. Proctor, D.M., Fehling, K.A., Shay, E.C., Wittenborn, J.L., Green, J.J., Avent, C., Bigham, R.D., Connolly, M., Lee, B., Shepker, T.O. and Zak, M.A. (2000), "Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags", Environ. Sci. Technol., 34(8), 1576-1582. https://doi.org/10.1021/es9906002.
  61. Riefler, G. (2007), "Use of fluidized bed slag reactors for passive treatment of acid mine drainage". Water Resources Center, Annual Technical Report, FY 2007.
  62. Saeed, T., Afrin, R., Al Muyeed, A. and Sun, G. (2012), "Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh", Chemosphere, 88(9), 1065-1073. https://doi.org/10.1016/j.chemosphere.2012.04.055
  63. Shilton, A., Chen, L., Elemetri, I., Pratt, C. and Pratt, S. (2013), "Active slag filters: rapid assessment of phosphorus removal efficiency from effluent as a function of retention time", Environmental Technology, 34(2), 195-200. https://doi.org/10.1080/09593330.2012.689365
  64. Shilton, A.N., Elmetri, I., Drizo, A., Pratt, S., Haverkamp, R.G. and Bilby, S.C. (2006), "Phosphorus removal by an 'active'slag filter-a decade of full scale experience", Water Res., 40(1), 113-118. https://doi.org/10.1016/j.watres.2005.11.002.
  65. Singh, N.B., Nagpal G. and Agrawal S. (2018), "Water purification by using adsorbents: A review", Environ. Technol. Innov., 11, 187-240. https://doi.org/10.1016/j.eti.2018.05.006.
  66. Srivastava, S.K., Gupta, V.K. and Mohan, D. (1997), "Removal of lead and chromium by activated slag-a blast-furnace waste", J. Environ. Eng., 123(5), 461-468. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461).
  67. Valero, M.C., Johnson, M., Mather, T. and Mara, D.D. (2009), "Enhanced phosphorus removal in a waste stabilization pond system with blast furnace slag filters", Desalin. Water Treat., 4(1-3), 122-127. https://doi.org/10.5004/dwt.2009.366/
  68. Yasipourtehrani, S., Strezov, V. and Evans, T. (2019), "Investigation of phosphate removal capability of blast furnace slag in wastewater treatment", Scientific Reports, 9, 7498. https://doi.org/10.1038/s41598-019-43896-y.
  69. Zhang, M., Yang, C., Zhao, M., Yang, K., Shen, R. and Zheng, Y. (2017), "Immobilization potential of Cr (VI) in sodium hydroxide activated slag pastes", J. Hazard. Mater., 321, 281-289. https://doi.org/10.1016/j.jhazmat.2016.09.019.
  70. Zuo, M., Renman, G., Gustafsson, J.P. and Klysubun, W. (2018), "Dual slag filters for enhanced phosphorus removal from domestic wastewater: Performance and mechanisms", Environ. Sci. Pollut. Res., 25, 7391-7400. https://doi.org/10.1007/s11356-017-0925-y.