DOI QR코드

DOI QR Code

Pt/TiO2의 HS 산화반응 및 SO2 피독과 재생 방안 연구

A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration

  • 이동윤 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Lee, Dong Yoon (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 투고 : 2019.11.14
  • 심사 : 2019.11.19
  • 발행 : 2019.12.10

초록

본 연구에서는 Pt/TiO2를 파우더 및 허니컴 형태로 제조하고, 촉매의 피독 물질인 SO2에 대한 영향과 재생 방안을 연구하였다. 이에 따라 Pt/TiO2의 SO2 노출 전·후 촉매 활성을 비교하였다. Pt/TiO2의 초기 활성은 주입되는 H2 농도(1~5%)에 비례하며, 촉매의 온도와 H2 전환율이 각각 최대 183 ℃와 95%로 나타났다. 2,800 ppm SO2를 파우더 및 허니컴 Pt/TiO2에 노출시켰고, 이때 성능이 나타나지 않았고 촉매 표면에 0.69%의 황(S)이 잔류함을 확인하였다. 피독 촉매에 대한 세척 및 열처리 결과, 파우더 촉매는 세척에 의해 96% 이상의 H2 전환율을 나타냈고 허니컴 촉매는 H2 또는 air 분위기의 열처리를 통해 촉매 활성이 재생되어 95% 이상의 H2 전환율이 확인되었다.

In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.

키워드

참고문헌

  1. L. A. Wallace, Major sources of exposure to benzene and other volatile organic compounds, Risk Anal., 10, 59-64 (1990). https://doi.org/10.1111/j.1539-6924.1990.tb01020.x
  2. S. Ait-Aissa, J. M. Porcher, A. P. Arrigo, and C. Lambre, Activation of the hsp70 promoter by environmental inorganic and organic chemicals: Relationships with cytotoxicity and lipophilicity, Toxicology, 145, 147-157 (2000). https://doi.org/10.1016/S0300-483X(00)00145-1
  3. H. Guo and F. Murray, Characterization of total volatile organic compound emissions from paints, Clean Prod. Process., 2(1), 28-36 (2000). https://doi.org/10.1007/s100980050048
  4. Y. M. Kim, S. Harrad, and R. M. Harrison, Levels and sources of personal inhalation exposure to volatile organic compounds, Environ. Sci. Technol., 36, 5405-5410 (2000). https://doi.org/10.1021/es010148y
  5. Z. Zhang, Z. Jiang, and W. Shangguan, Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review, Catal. Today, 264, 270-278 (2016). https://doi.org/10.1016/j.cattod.2015.10.040
  6. T. Brinkmann, G. G. Santonja, H. Yukseler, S. Roudier, and L. D. Sancho, Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector; EUR 28112; Publications Office of the European Union: Luxembourg, ISBN 9789279619960 (2016).
  7. G. C. Bond, The modification of catalytic properties by metal-support interaction, Stud. Surf. Sci. Catal., 11, 1-10 (1982). https://doi.org/10.1016/S0167-2991(09)61371-9
  8. W. C. Conner and J. L. Falconer, Spillover in heterogeneous catalysis, Chem. Rev., 95, 759-788 (1995). https://doi.org/10.1021/cr00035a014
  9. H. Huang and D. Y. C. Leung, Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal., 280, 60-67 (2011). https://doi.org/10.1016/j.jcat.2011.03.003
  10. L. F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal. B, 100, 403-412 (2010). https://doi.org/10.1016/j.apcatb.2010.08.023
  11. Y. S. Kang, S. S. Kim, P. W. Seo, S. H. Lee, and S. C. Hong, Hydrogen recombination over $Pt/TiO_2$ coated honeycomb catalyst, Appl. Chem. Eng., 22(6), 648-652 (2011).
  12. S. C. Kim, G. J. Kim, and S. C. Hong, Effect of physico-chemical properties of $Pt/TiO_2$ catalysts on CO oxidation at room temperature, Appl. Chem. Eng., 29(6), 657-662 (2018). https://doi.org/10.14478/ACE.2018.1057
  13. N. M. Kinnunen, K. Kallinen, T. Maunula, M. Keenan, and M. Suvanto, Fundamentals of sulfate species in methane combustion catalyst operation and regeneration - A simulated exhaust gas study, Catalysts, 9(5), 417-426 (2019). https://doi.org/10.3390/catal9050417
  14. L. J. Hoyos, H. Praliaud, and M. Primet, Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide, Appl. Catal. A, 98, 125-138 (1993). https://doi.org/10.1016/0926-860X(93)80028-O
  15. J. K. Lampert, M. S. Kazi, and R. J. Farrauto, Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles, Appl. Catal. B, 14, 211-223 (1997). https://doi.org/10.1016/S0926-3373(97)00024-6
  16. S. Colussi, F. Arosio, T. Montanari, G. Busca, G. Groppi, and A. Trovarelli, Study of sulfur poisoning on $Pd/Al_2O_3$ and $Pd/CeO_2/Al_2O_3$ methane combustion catalysts, Catal. Today, 155, 59-65 (2010). https://doi.org/10.1016/j.cattod.2009.02.019
  17. A. Gremminger, P. Lott, M. Merts, M. Casapu, J. D. Grunwaldt, and O. Deutschmann, Sulfur poisoning and regeneration of bimetallic Pd-Pt methane oxidation catalysts, Appl. Catal. B, 218, 833-843 (2017). https://doi.org/10.1016/j.apcatb.2017.06.048
  18. J. Y. Luo, D. Kisinger, A. Abedi, and W. S. Epling, Sulfur release from a model $Pt/Al_2O_3$ diesel oxidation catalyst: Temperature-programmed and step-response techniques characterization, Appl. Catal. A, 383, 182-191 (2010). https://doi.org/10.1016/j.apcata.2010.05.049
  19. S. Ordinez, P. Hurtado, and F. V. Diez, Methane catalytic combustion over $Pd/Al_2O_3$ in presence of sulphur dioxide: development of a regeneration procedure, Catal. Lett., 100, 27-34 (2005). https://doi.org/10.1007/s10562-004-3081-1
  20. S. Zhongyi, H. Yufeng, X. Jianming, W. Xiaoming, and L. Weiping, $SO_2$ poisoning and regeneration of Mn-Ce/$TiO_2$ catalyst for low temperature NOx reduction with $NH_3$, J. Rare Earths, 30(7), 676-682 (2012). https://doi.org/10.1016/S1002-0721(12)60111-2
  21. S. J. Lee and S. C. Hong, Deactivation and regeneration of a uesd De-NOx SCR catalyst for wastes incinerator, J. Korean Ind. Eng. Chem., 19(3), 259-263 (2008).