References
- M. D. Ganji, Z. Dalirandeh, A. Khosravi, and A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection, Mater. Chem. Phys., 145, 260-267 (2014). https://doi.org/10.1016/j.matchemphys.2014.02.021
-
K. T. Alali, J. Liu, K. Aliebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, and J. Wang, Electrospun n-p
$WO_3/CuO$ heterostructure nanofibers as an efficient sarin nerve agent sensing material at room temperature, J. Aollys Compd., 793, 31-41 (2019). https://doi.org/10.1016/j.jallcom.2019.04.157 - J. Jun, J. S. Lee, D. H. Shin, J. Oh, W. Kim, W. N. and, Fabrication of a one-dimensional tube-in-tube polypyrrole/Tin oxide structure for highly sensitive DMMP sensor applications, J. Mater. Chem., 33, 17335-17340 (2017).
-
Y. C. Quintero and R. Nagarajan, Molecular and dissociative adsorption of DMMP, sarin and soman on dry and wet
$TiO_2(110)$ using density functional theory, Surf. Sci., 675, 26-35 (2018). https://doi.org/10.1016/j.susc.2018.04.002 - T. Alizadeh and L. H. Soltani, Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor, Sens. Actuators B., 234, 361-370 (2016). https://doi.org/10.1016/j.snb.2016.04.165
- M. J. Kim, S. Lee, K. M. Lee, H. Jo, S. S. Choi, and Y. S. Lee, Effect of CuO introduced on activated carbon fibers formed by electroless plating on the NO gas sensing, J. Ind. Eng. Chem., 60, 341-347 (2018). https://doi.org/10.1016/j.jiec.2017.11.020
- M. J. Kim, K. H. Kim, X. Yang, Y. Yu, and Y. S. Lee, Improvement in NO gas-sensing properties using heterojunctions between polyaniline and nitrogen on activated carbon fibers, J. Ind. Eng. Chem., 76, 181-187 (2019). https://doi.org/10.1016/j.jiec.2019.03.037
- J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, Fabrication of ultrafine metal-oxide decorated carbon nanofibers for DMMP sensor appliciation, ACS Nano, 5, 7992-8001 (2011). https://doi.org/10.1021/nn202471f
- R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, Highly selective detection of dimethyl methylphosphonate(DMMP) using CuO nanoparticles/ZnO flowers heterojunction, Sens. Actuators B, 240, 1099-1105 (2017). https://doi.org/10.1016/j.snb.2016.09.028
- J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
- S. C. Kang, J. S. Im, and Y. S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
-
S. Lee, M. S. Park, M. J. Jung, and Y. S. Lee, NO gas sensing of ACFs treated by E-beam irradiation in
$H_2O_2$ solution, Trans. Korean Hydrogen New Energy Soc., 27, 298-305 (2016). https://doi.org/10.7316/KHNES.2016.27.3.298 - M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ace.2015.1050
- S. D. Kim, J. W. Kim, J. S. Im, S. H. Cho, and Y. S. Lee, Surface modification characteristics of activated carbon fibers for hydrogen storage, Trans. Korean Hydrogen New Energy Soc., 17, 47-54 (2006).
-
B. C. Bai, H. U. Lee, C. W. Lee, Y. S. Lee, and J. S. Im,
$N_2$ plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016). https://doi.org/10.1016/j.cej.2016.07.046 - J. Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, and R. F. Hicks, Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma, J. Phys. Chem. A, 104, 8027-8032 (2000). https://doi.org/10.1021/jp0012449
- J. Duch, M. Mazur, M. G. Cepa, J. Podobinski, W. Piskorz, and A. Kotarba, Insight into the modification of electrodonor properties of multiwalled carbon nanotubes via oxygen plasma: Surface functionalization versus amorphization, Carbon, 137, 425-432 (2018). https://doi.org/10.1016/j.carbon.2018.05.059
- M. J. Jung, Y. Ko, K. H. Kim, and Y. S. Lee, Oxyfluorination of pitch-based activated carbon fibers for high power electric double layer capacitor, Appl. Chem. Eng., 28, 638-644 (2017). https://doi.org/10.14478/ace.2017.1079
- S. C. Kang, J. S. Im, S. H. Lee, T. S. Bae, and Y. S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.001
- M. J. Jung, M. S. Park, S. Lee, and Y. S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ace.2016.1042
- E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y. S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
- S. J. Park and B. J. Kim, Surface characteristics and hydrogen chloride removal of activated carbon fibers modified by atmospheric pressure plasma treatment, J. Korean Ind. Eng. Chem., 15, 611-617 (2004).
- D. H. Kang, M. J. Kim, H. Jo, Y. J. Choi, and Y. S. Lee, Influence of the micropore structures of PAN-based activated carbon fibers on nerve agent simulant gas (DMMP) sensing property, Appl. Chem. Eng., 29, 191-195 (2018). https://doi.org/10.14478/ace.2017.1128
- M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
-
M. S. Park, K. H. Kim, M. J. Kim, and Y. S. Lee,
$NH_3$ gas sensing properties of a gas sensor based on fluorinated graphene oxide, Colloids Surf. A, 490, 104-109 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.028 - S. Lee, M. J. Jung, K. M. Lee, and Y. S. Lee, Nitric oxide sensing property of gas sensor based on activated carbon fiber radiated by electron-beam, Appl. Chem. Eng., 28, 299-305 (2017). https://doi.org/10.14478/ace.2017.1017
-
N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature
$NH_3$ gas sensor based on chemically reduced graphene oxide, Nanotechnology, 25, 1-9 (2014). - S. R. Morrison, Mechanism of semiconductor gas sensor operation, Sens. Actuators, 11, 283-287 (1987). https://doi.org/10.1016/0250-6874(87)80007-0
- H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actucators B, 115, 247-251 (2006). https://doi.org/10.1016/j.snb.2005.09.008
- M. J. Kim, E. J. Song, K. H. Kim, S. S. Choi, and Y. S. Lee, The textural and chemical changes in ACFs with E-beam and their influence on the detection of nerve agent simulant gases, J. Ind. Eng. Chem., 79, 465-472 (2019). https://doi.org/10.1016/j.jiec.2019.07.022
Cited by
- Alkalized SnS Nanoflakes with Enhanced Sensing Properties towards Methanol Vapor vol.9, pp.12, 2019, https://doi.org/10.1149/2162-8777/abd51a