DOI QR코드

DOI QR Code

Effects of Oxygen Functional Groups introduced onto Activated Carbon Fibers on Gas Sensing Property of Chemical Warfare Agent

활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향

  • Kim, Su Hyun (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kim, Min-Ji (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Song, Eun Ji (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 김수현 (충남대학교 응용화학공학과) ;
  • 김민지 (충남대학교 응용화학공학과) ;
  • 송은지 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2019.10.17
  • Accepted : 2019.11.07
  • Published : 2019.12.10

Abstract

In this study, activated carbon fibers were treated with oxygen plasma to investigate gas sensing properties of the dimethyl methylphosphonate (DMMP), which is a simulant gas of the chemical warfare agent, according to oxygen functional group contents. As the flow rate of oxygen plasma treatment increased, oxygen groups were introduced to the surface of activated carbon fibers from 6.90 up to 36.6%, increasing the -OH group which influences the DMMP gas sensing properties. However, as the flow rate of oxygen plasma increases, the specific surface area tends to decrease because etching on the surface of activated carbon fibers occurs due to active species generated during the oxygen plasma treatment. The resistance change rate of the DMMP gas sensor increased from 4.2 up to 25.1% as the oxygen plasma treatment flow rate increased. This is attributed to the hydrogen bonding between DMMP gas and introduced hydroxyl functional group on activated carbon fibers by the oxygen plasma treatment. Therefore, the oxygen plasma is considered to be one of the important surface treatment methods for detecting chemical warfare agents at room temperature.

본 실험에서는 활성탄소섬유에 산소플라즈마 처리를 실시하여 산소작용기 도입 함량에 따른 유독성 화학작용제의 모사 가스인 dimethyl methylphosphonate (DMMP) 감응특성에 대하여 고찰하였다. 산소플라즈마 처리 유량이 증가할수록 활성탄소섬유 표면에 산소가 6.90%에서 최대 36.6%까지 도입되어 DMMP 가스 감응특성에 영향을 미치는 -OH가 증가하였다. 그러나 유량이 증가할수록 산소플라즈마 처리 시 발생한 산소 활성종으로 인하여 활성탄소섬유 표면에 식각이 발생하여 비표면적은 감소하는 경향을 보였다. DMMP 가스센서의 저항변화율은 산소플라즈마 처리 유량이 증가함에 따라 4.2%에서 최대 25.1%까지 증가하였다. 이는 산소플라즈마 처리로 인하여 활성탄소섬유에 발달된 -OH와 DMMP 가스의 수소결합으로 인한 것이라 여겨진다. 따라서 산소플라즈마 처리는 상온에서 유독성화학작용제 가스를 감지하기 위한 중요한 표면처리 방법 중 하나라고 판단된다.

Keywords

References

  1. M. D. Ganji, Z. Dalirandeh, A. Khosravi, and A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection, Mater. Chem. Phys., 145, 260-267 (2014). https://doi.org/10.1016/j.matchemphys.2014.02.021
  2. K. T. Alali, J. Liu, K. Aliebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, and J. Wang, Electrospun n-p $WO_3/CuO$ heterostructure nanofibers as an efficient sarin nerve agent sensing material at room temperature, J. Aollys Compd., 793, 31-41 (2019). https://doi.org/10.1016/j.jallcom.2019.04.157
  3. J. Jun, J. S. Lee, D. H. Shin, J. Oh, W. Kim, W. N. and, Fabrication of a one-dimensional tube-in-tube polypyrrole/Tin oxide structure for highly sensitive DMMP sensor applications, J. Mater. Chem., 33, 17335-17340 (2017).
  4. Y. C. Quintero and R. Nagarajan, Molecular and dissociative adsorption of DMMP, sarin and soman on dry and wet $TiO_2(110)$ using density functional theory, Surf. Sci., 675, 26-35 (2018). https://doi.org/10.1016/j.susc.2018.04.002
  5. T. Alizadeh and L. H. Soltani, Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor, Sens. Actuators B., 234, 361-370 (2016). https://doi.org/10.1016/j.snb.2016.04.165
  6. M. J. Kim, S. Lee, K. M. Lee, H. Jo, S. S. Choi, and Y. S. Lee, Effect of CuO introduced on activated carbon fibers formed by electroless plating on the NO gas sensing, J. Ind. Eng. Chem., 60, 341-347 (2018). https://doi.org/10.1016/j.jiec.2017.11.020
  7. M. J. Kim, K. H. Kim, X. Yang, Y. Yu, and Y. S. Lee, Improvement in NO gas-sensing properties using heterojunctions between polyaniline and nitrogen on activated carbon fibers, J. Ind. Eng. Chem., 76, 181-187 (2019). https://doi.org/10.1016/j.jiec.2019.03.037
  8. J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, Fabrication of ultrafine metal-oxide decorated carbon nanofibers for DMMP sensor appliciation, ACS Nano, 5, 7992-8001 (2011). https://doi.org/10.1021/nn202471f
  9. R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, Highly selective detection of dimethyl methylphosphonate(DMMP) using CuO nanoparticles/ZnO flowers heterojunction, Sens. Actuators B, 240, 1099-1105 (2017). https://doi.org/10.1016/j.snb.2016.09.028
  10. J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
  11. S. C. Kang, J. S. Im, and Y. S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
  12. S. Lee, M. S. Park, M. J. Jung, and Y. S. Lee, NO gas sensing of ACFs treated by E-beam irradiation in $H_2O_2$ solution, Trans. Korean Hydrogen New Energy Soc., 27, 298-305 (2016). https://doi.org/10.7316/KHNES.2016.27.3.298
  13. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ace.2015.1050
  14. S. D. Kim, J. W. Kim, J. S. Im, S. H. Cho, and Y. S. Lee, Surface modification characteristics of activated carbon fibers for hydrogen storage, Trans. Korean Hydrogen New Energy Soc., 17, 47-54 (2006).
  15. B. C. Bai, H. U. Lee, C. W. Lee, Y. S. Lee, and J. S. Im, $N_2$ plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016). https://doi.org/10.1016/j.cej.2016.07.046
  16. J. Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, and R. F. Hicks, Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma, J. Phys. Chem. A, 104, 8027-8032 (2000). https://doi.org/10.1021/jp0012449
  17. J. Duch, M. Mazur, M. G. Cepa, J. Podobinski, W. Piskorz, and A. Kotarba, Insight into the modification of electrodonor properties of multiwalled carbon nanotubes via oxygen plasma: Surface functionalization versus amorphization, Carbon, 137, 425-432 (2018). https://doi.org/10.1016/j.carbon.2018.05.059
  18. M. J. Jung, Y. Ko, K. H. Kim, and Y. S. Lee, Oxyfluorination of pitch-based activated carbon fibers for high power electric double layer capacitor, Appl. Chem. Eng., 28, 638-644 (2017). https://doi.org/10.14478/ace.2017.1079
  19. S. C. Kang, J. S. Im, S. H. Lee, T. S. Bae, and Y. S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.001
  20. M. J. Jung, M. S. Park, S. Lee, and Y. S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ace.2016.1042
  21. E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y. S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  22. S. J. Park and B. J. Kim, Surface characteristics and hydrogen chloride removal of activated carbon fibers modified by atmospheric pressure plasma treatment, J. Korean Ind. Eng. Chem., 15, 611-617 (2004).
  23. D. H. Kang, M. J. Kim, H. Jo, Y. J. Choi, and Y. S. Lee, Influence of the micropore structures of PAN-based activated carbon fibers on nerve agent simulant gas (DMMP) sensing property, Appl. Chem. Eng., 29, 191-195 (2018). https://doi.org/10.14478/ace.2017.1128
  24. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  25. M. S. Park, K. H. Kim, M. J. Kim, and Y. S. Lee, $NH_3$ gas sensing properties of a gas sensor based on fluorinated graphene oxide, Colloids Surf. A, 490, 104-109 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.028
  26. S. Lee, M. J. Jung, K. M. Lee, and Y. S. Lee, Nitric oxide sensing property of gas sensor based on activated carbon fiber radiated by electron-beam, Appl. Chem. Eng., 28, 299-305 (2017). https://doi.org/10.14478/ace.2017.1017
  27. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature $NH_3$ gas sensor based on chemically reduced graphene oxide, Nanotechnology, 25, 1-9 (2014).
  28. S. R. Morrison, Mechanism of semiconductor gas sensor operation, Sens. Actuators, 11, 283-287 (1987). https://doi.org/10.1016/0250-6874(87)80007-0
  29. H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actucators B, 115, 247-251 (2006). https://doi.org/10.1016/j.snb.2005.09.008
  30. M. J. Kim, E. J. Song, K. H. Kim, S. S. Choi, and Y. S. Lee, The textural and chemical changes in ACFs with E-beam and their influence on the detection of nerve agent simulant gases, J. Ind. Eng. Chem., 79, 465-472 (2019). https://doi.org/10.1016/j.jiec.2019.07.022

Cited by

  1. Alkalized SnS Nanoflakes with Enhanced Sensing Properties towards Methanol Vapor vol.9, pp.12, 2019, https://doi.org/10.1149/2162-8777/abd51a