참고문헌
- S. Mandal and A. Dey, Chapter 1. PET chemistry, Recycling of Polyethylene Terephthalate Bottles, 1-22, William Andrew Publishing (2019).
- Z. Leng, R. K. Padhan, and A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt, J. Clean. Prod., 180, 682-688 (2018). https://doi.org/10.1016/j.jclepro.2018.01.171
- S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, and M. K. Aroua, A review on pyrolysis of plastic wastes, Energy Convers. Manag., 115, 308-326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037
- G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, and M. Olazar, Recent advances in the gasification of waste plastics. A critical overview, Renew. Sustain. Energy Rev., 82, 576-596 (2018). https://doi.org/10.1016/j.rser.2017.09.032
- N. Malik, P. Kumar, S. Shrivastava, and S. B. Ghosh, An overview of PET waste recycling for application in packaging, Int. J. Plast. Technol., 21, 1-24 (2017). https://doi.org/10.1007/s12588-016-9164-1
- M. Fukushima, B. Wu, H. Ibe, K. Wakai, E. Sugiyama, H. Abe, K. Kitogawa, S. Tsuruge, K. Shimura, and E. Ono, Study on dechlorination technology for municipal waste plastics containing polyvinyl chloride and polyethylene terephthalate, J. Mater. Cycles Waste Manag., 12, 108-122 (2010). https://doi.org/10.1007/s10163-010-0279-8
-
S. Kumagai, R. Yamasaki, T. Kameda, Y. Saito, A. Watanabe, C. Watanabe, N. Teramae and T. Yoshioka, Tandem
${\mu}$ -reactor-GC/MS for online monitoring of aromatic hydrocarbon production via CaO-catalysed PET pyrolysis, React. Chem. Eng., 2, 776-784 (2017). https://doi.org/10.1039/C7RE00097A - S. Du, J. A. Valla, R. S. Parnas, and G. M. Bollas, Conversion of polyethylene terephthalate based waste carpet to benzene-rich oils through thermal, catalytic, and catalytic steam pyrolysis, ACS Sustain. Chem. Eng., 4, 2852-2860 (2016). https://doi.org/10.1021/acssuschemeng.6b00450
- L. S. Diaz-Silvarrey, A. McMahon, and A. N. Phan, Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulfated zirconia catalyst, J. Anal. Appl. Pyrolysis, 134, 621-631 (2018). https://doi.org/10.1016/j.jaap.2018.08.014
- Y. K. Park, J. Jung, S. Ryu, H. W. Lee, M. Z. Siddiqui, J. Jae, A. Watanabe, and Y. M. Kim, Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two-stage calcium oxide-ZSM-5, Appl. Energy, 250, 1706-1718 (2019). https://doi.org/10.1016/j.apenergy.2019.05.088
- S. Tsuge, H. Ohtani, and C. Watanabe, Pyrolysis-GC/MS Data Book of Synthetic Polymers, 1st ed., Elsevier, Oxford, UK (2011).
- D. Shin, S. Jeong, Y. M. Kim, H. W. Lee, and Y. K. Park, Catalytic pyrolysis of waste paper cup containing coffee residuals, Appl. Chem. Eng., 29, 248-251 (2018). https://doi.org/10.14478/ACE.2018.1004
- F. J. H. T. V. Ramos, L. C. Mendes, and S. P. Cestari, Organically modified concrete waste with oleic acid, J. Therm. Anal. Calorim., 119, 1895-1904 (2015) https://doi.org/10.1007/s10973-014-4358-2
- A. P. S. Pereira, M. H. P. Silva, E, P. L. Junior, A. S. Paula, and F. J. Tommasini, Processing and characterization of pet composites reinforced with geopolymer concrete waste, Mater. Res., 20, 411-420 (2017). https://doi.org/10.1590/1980-5373-mr-2017-0734
- M. Fukushima, M. Shioya, H. Wakai, H. Ibe, Toward maximizing the recycling rate in a Sapporo waste plastics liquefaction plant, J. Mater. Cycles Waste Manag., 11, 11-18 (2009). https://doi.org/10.1007/s10163-008-0212-6
- G. Ozsin and A. E. Putun, A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics, J. Clean. Prod., 205, 1127-1138 (2018). https://doi.org/10.1016/j.jclepro.2018.09.134
-
Q. Xu, T. Meng, and M. Huang, Effects of nano-
$CaCO_3$ on the compressive strength and microstructure of high strength concrete in different curing temperatures, Appl. Mech. Mater., 121-126, 126-131 (2011). https://doi.org/10.4028/www.scientific.net/AMM.121-126.126