References
- E. H. Yu, U. Krewer, and K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies, 3, 1499-1528 (2010). https://doi.org/10.3390/en3081499
- E. Antolini and E. R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources, 195, 3431-3450 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.145
- E. H. Yu, X. Wang, U. Krewer, L. Li, and K. Scott, Direct oxidation alkaline fuel cells: From materials to systems, Energy Environ. Sci., 5, 5668-5670 (2012). https://doi.org/10.1039/C2EE02552C
- S. Uhm, M. Seo, and J. Lee, Competitiveness of formic acid fuel cells: In comparison with methanol, Appl. Chem. Eng., 27, 123-127 (2016). https://doi.org/10.14478/ace.2016.1021
- D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
- G. E. Evans and K. V. Kordesch, Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory, Science, 158, 1148-1152 (1967). https://doi.org/10.1126/science.158.3805.1148
- K. Tamura and T. Kahara, Exhaust gas compositions and fuel efficiencies of hydrazine-air fuel cells, J. Electrochem. Soc., 123, 776-780 (1976). https://doi.org/10.1149/1.2132932
- A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B, 98, 1-9 (2010). https://doi.org/10.1016/j.apcatb.2010.05.005
- K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, and T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 115, 236-242 (2003). https://doi.org/10.1016/S0378-7753(03)00008-9
- K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, and T. Kobayashi, A platinum-free zero-carbon-emission easy fueling direct hydrazine fuel cell for vehicles, Angew. Chem. Int. Ed., 46, 8024-8027 (2007). https://doi.org/10.1002/anie.200701334
- K. Asazawa, T. Sakamoto, S. Yamaguchi, K. Yamada, H. Fujikawa, H. Tanaka, and K. Oguro, Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells, J. Electrochem. Soc., 156, B509-B512 (2009). https://doi.org/10.1149/1.3082129
- A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, and H. Tanaka, Anode catalysts for direct hydrazine fuel cells: From laboratory test to an electric vehicle, Angew. Chem. Int. Ed., 53, 10336-10339 (2014). https://doi.org/10.1002/anie.201404734
- J. Sanabria-Chinchilla, K. Asazawa, T. Sakamoto, K. Yamada, H. Tanaka, and P. Strasser, Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways, J. Am. Chem. Soc., 133, 5425-5431 (2011). https://doi.org/10.1021/ja111160r
- T. Sakamoto, D. Matsumura, K. Asazawa, U. Martinez, A. Serov, K. Artyushkova, P. Atanassov, K. Tamura, Y. Nishihata, and H. Tanaka, Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells, Electrochim. Acta, 163, 116-122 (2015). https://doi.org/10.1016/j.electacta.2015.02.156
- F. Yang, K. Cheng, G. Wang, and D. Cao, Flower-like Co nano-particles deposited on Ni foam substrate as efficient noble metal-free catalyst for hydrazine oxidation, J. Electroanal. Chem., 756, 186-192 (2015). https://doi.org/10.1016/j.jelechem.2015.08.023
- T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, and P. Atanassov, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochim. Acta, 215, 420-426 (2016). https://doi.org/10.1016/j.electacta.2016.08.106
-
T. Sakamoto, T. Masud, K. Yoshimoto, H. Kishi, S. Yamaguchi, D. Matsumura, K. Tamura, A. Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P. Atanassov, and H. Tanaka,
$NiO/Nb_2O_5/C$ hydrazine electrooxidation catalysts for anion exchange membrane fuel cells, J. Electrochem. Soc., 164, F22-F234 (2017). https://doi.org/10.1149/2.0101702jes - J. Jeong, M. Choun, and J. Lee, Tree-bark-shaped N-doped porous carbon anode for hydrazine fuel cells, Angew. Chem., 129, 13698-13701 (2017). https://doi.org/10.1002/ange.201707880
- Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, and L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells, Adv. Mater., 27, 2361-2366 (2015). https://doi.org/10.1002/adma.201500064
- K. Akbar, J. H. Kim, Z. Lee, M. Kim, Y. Yi, and S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Mater., 9, e378 (2017). https://doi.org/10.1038/am.2017.55
- W. X. Yin, Z. P. Li, J. K. Zhu, and H. Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, J. Power Sources, 182, 520-523 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.028
- Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu, and T. Asefa, Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation, Adv. Mater., 26, 6510-6516 (2014). https://doi.org/10.1002/adma.201401969
- S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.-H. Lee, C.-H. Shin, S.-H. Moon, S.-K. Kim, E. Lee, and J. Lee, Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position, Angew. Chem. Int. Ed., 54, 9230-9234 (2015). https://doi.org/10.1002/anie.201501590
- T. Sakamoto, A. Serov, T. Masuda, M. Kamakura, K. Yoshimoto, T. Omata, H. Kishi, S. Yamaguchi, A. Hori, Y. Horiuchi, T. Terada, K. Artyushkova, P. Atanassov, and H. Tanaka, Highly durable direct hydrazine hydrate anion exchange membrane fuel cell, J. Power Sources, 375, 291-299 (2018). https://doi.org/10.1016/j.jpowsour.2017.05.052
- Z. Lu, Y. Li, X. Lei, J. Liu, and X. Sun, Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes, Mater. Horiz., 2, 294-298 (2015). https://doi.org/10.1039/C4MH00208C
- P. Argyropoulos, K. Scott, and W. M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta, 44, 3575-3584 (1999). https://doi.org/10.1016/S0013-4686(99)00102-4
-
H. Yang, T. S. Zhao, and Q. Ye, In situ visualization study of
$CO_2$ gas bubble behavior in DMFC anode flow fields, J. Power Sources, 139, 79-90 (2005). https://doi.org/10.1016/j.jpowsour.2004.05.033 - K. Scott, P. Argyropoulos, P. Yiannopoulos, and W. M. Taama, Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds, J. Appl. Electrochem., 31, 823-832 (2001). https://doi.org/10.1023/A:1017559124395
- X. Chen, Y. Wu, B. Su, J. Wang, Y. Song, and L. Jiang, Terminating marine methane bubbles by superhydrophobic sponges, Adv. Mater., 24, 5884-5889 (2012). https://doi.org/10.1002/adma.201202061
- J. Wang, Q. Yang, M. Wang, C. Wang, and L. Jiang, Rose petals with a novel and steady air bubble pinning effect in aqueous media, Soft Matter., 8, 2261-2266 (2012). https://doi.org/10.1039/c2sm06705f
- W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater, 22, 2325-2328 (2010). https://doi.org/10.1002/adma.200904411
- B. Jeong, J. D. Ocon, and J. Lee, Electrode architecture in galvanic and electrolytic energy cells, Angew. Chem. Int. Ed., 55, 4870-4880 (2016). https://doi.org/10.1002/anie.201507780
- T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe, and W. E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, J. Power Sources, 375, 205-213 (2018). https://doi.org/10.1016/j.jpowsour.2017.05.006
- S. Uhm, H. J. Lee, and J. Lee, Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 11, 9326-9336 (2009). https://doi.org/10.1039/b909525j
Cited by
- Steam activation of Fe-N-C catalyst for advanced power performance of alkaline hydrazine fuel cells vol.64, 2019, https://doi.org/10.1016/j.jechem.2021.04.029