DOI QR코드

DOI QR Code

Development and Evaluation of Urban Canopy Model Based on Unified Model Input Data Using Urban Building Information Data in Seoul

서울 건물정보 자료를 활용한 UM 기반의 도시캐노피 모델 입력자료 구축 및 평가

  • Kim, Do-Hyoung (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Hong, Seon-Ok (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Byon, Jae-Yong (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Park, HyangSuk (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Ha, Jong-Chul (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
  • 김도형 (국립기상과학원 용용기상연구과) ;
  • 홍선옥 (국립기상과학원 용용기상연구과) ;
  • 변재영 (국립기상과학원 용용기상연구과) ;
  • 박향숙 (국립기상과학원 용용기상연구과) ;
  • 하종철 (국립기상과학원 용용기상연구과)
  • Received : 2019.07.12
  • Accepted : 2019.09.24
  • Published : 2019.11.30

Abstract

The purpose of this study is to build urban canopy model (Met Office Reading Urban Surface Exchange Scheme, MORUSES) based to Unified Model (UM) by using urban building information data in Seoul, and then to compare the improving urban canopy model simulation result with that of Seoul Automatic Weather Station (AWS) observation site data. UM-MORUSES is based on building information database in London, we performed a sensitivity experiment of UM-MOURSES model using urban building information database in Seoul. Geographic Information System (GIS) analysis of 1.5 km resolution Seoul building data is applied instead of London building information data. Frontal-area index and planar-area index of Seoul are used to calculate building height. The height of the highest building in Seoul is 40m, showing high in Yeoido-gu, Gangnam-gu and Jamsil-gu areas. The street aspect ratio is high in Gangnam-gu, and the repetition rate of buildings is lower in Eunpyeong-gu and Gangbuk-gu. UM-MORUSES model is improved to consider the building geometry parameter in Seoul. It is noticed that the Root Mean Square Error (RMSE) of wind speed is decreases from 0.8 to 0.6 m s-1 by 25 number AWS in Seoul. The surface air temperature forecast tends to underestimate in pre-improvement model, while it is improved at night time by UM-MORUSES model. This study shows that the post-improvement UM-MORUSES model can provide detailed Seoul building information data and accurate surface air temperature and wind speed in urban region.

Keywords

References

  1. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  2. Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Q. J. R. Meteorol. Soc., 137, 1625-1640, doi:10.1002/qj.855.
  3. Byon, J. Y., Y. J. Choi, and B. G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul. Atmosphere., 20, 13-26 (in Korean with English abstract).
  4. Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.
  5. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  6. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  7. Hong, S. H., J. Y. Byon, H. S. Park, Y. G. Lee, B. J. Kim, and J. C. Ha, 2018: Sensitivity analysis of near surface air temperature to land cover change and urban parameterization scheme using unified model. Atmosphere., 28, 427-441 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2018.28.4.427
  8. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358. https://doi.org/10.1023/A:1019207923078
  9. Lee, S.-H., and S.-U. Park., 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73-102. https://doi.org/10.1007/s10546-007-9221-6
  10. Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 2051-2064. https://doi.org/10.1175/JAMC-D-13-02.1
  11. Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 1391-1413, doi:10.1175/BAMS-D-16-0178.1.
  12. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  13. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Layer Meteor., 94, 357-397. https://doi.org/10.1023/A:1002463829265
  14. NIMR, 2014: Integrated Weather Services for Urban and Rural Area(III) - Development of Prediction Model for Urban and Rural Area(III). National Institute of Meteorological Research 11-1360000-0011310-10, 146-160 pp (in Korean).
  15. Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteorol., 47, 1061-1076. https://doi.org/10.1175/2007JAMC1598.1
  16. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Q. J. R. Meteorol. Soc., 136, 1514-1529, doi:10.1002/qj.668.
  17. Varquez, A. C. G., M. Nakayoshi, and M. Kanda, 2015: The effects of highly detailed urban roughness parameters on a sea-breeze numerical simulation. Bound.-Layer Meteor., 154, 449-469, doi:10.1007/s10546-014-9985-4.
  18. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc., 129, 1989-2010. https://doi.org/10.1256/qj.02.133
  19. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  20. Yi, C., T. H. Kwon, M. S. Park, Y. J. Choi, and S. M. An, 2015: A study on the roughness length spatial distribution in relation to the Seoul building morphology. Atmosphere, 25, 339-351 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.339