DOI QR코드

DOI QR Code

Projection of Future Sea Level Change Based on HadGEM2-AO Due to Ice-sheet and Glaciers

HadGEM2-AO 기반의 빙상과 빙하에 의한 미래 해수면 변화 전망

  • 김영미 (국립기상과학원 기후연구과) ;
  • 구태영 (국립기상과학원 기후연구과) ;
  • 문혜진 (국립기상과학원 기후연구과) ;
  • 최준태 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2019.07.02
  • Accepted : 2019.11.06
  • Published : 2019.11.30

Abstract

Global warming causes various problems such as the increase of the sea surface temperature, the change of coastlines, ocean acidification and sea level rise. Sea level rise is an especially critical threat to coastal regions where massive population and infrastructure reside. Sea level change is affected by thermal expansion and mass increase. This study projected future sea level changes in the 21st century using the HadGEM2-AO with RCP8.5 scenario. In particular, sea level change due to water mass input from ice-sheets and glaciers melting is studied. Sea level based on surface mass balance of Greenland ice-sheet and Antarctica ice-sheet rose 0.045 m and -0.053 m over the period 1986~2005 to 2081~2100. During the same period, sea level owing to dynamical change on Greenland ice-sheet and Antarctica ice-sheet rose 0.055 m and 0.03 m, respectively. Additionally, glaciers melting results in 0.145 m sea level rise. Although most of the projected sea level changes from HadGEM2-AO are slightly smaller than those from 21 ensemble data of CMIP5, both results are significantly consistent each other within 90% uncertainty range of CMIP5.

Keywords

References

  1. Arendt, A., and Coauthors, 2012: Randolph glacier inventory [v2.0]: A dataset of global glacier outlines. Global land Ice Measurements from Space initiative (GLIMS) Tech. Rep., 35 pp.
  2. Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, doi:10.1029/2010GL046270.
  3. Baek, H.-J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603-618, doi:10.1007/s13143-013-0053-7.
  4. Bahr, D. B., M. Dyurgerov, and M. F. Meier, 2009: Sealevel rise from glaciers and ice caps: A lower bound. Geophys. Res. Lett., 36, L03501, doi:10.1029/2008GL036309.
  5. Bi, D., and Coauthors, 2013: The ACCESS coupled model: description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 41-64. https://doi.org/10.22499/2.6301.004
  6. Church, J. A., and N. J. White, 2011: Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophy., 32, 585-602, doi:10.1007/s10712-011-9119-1.
  7. Clark, J. A., and C. S. Lingle, 1979: Predicted relative sealevel changes (18,000 Years B.P. to Present) caused by late-glacial retreat of the Antarctic ice sheet. Qua. Res., 11, 279-298. https://doi.org/10.1016/0033-5894(79)90076-0
  8. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model-HadFEM2. Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd-4-1051-2011.
  9. Cook, A. J., and D. G. Vaughan, 2010: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4, 77-98, doi:10.5194/tc-4-77-2010.
  10. Delworth, T. L., and Coauthors, 2006: GFDL's CM2 Global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643-674. https://doi.org/10.1175/JCLI3629.1
  11. Dix, M., and Coauthors, 2013: The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Aust. Meteor. Oceanogr. J., 63, 83-99. https://doi.org/10.22499/2.6301.006
  12. Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Clmate, 24, 3484-3519, doi:10.1175/2011JCLI3955.1.
  13. Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Climate Dyn., 40, 2123-2165, doi:10.1007/s00382-012-1636-1.
  14. Dunne, J. P., and Coauthors, 2012: GFDL's EMS2 Global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clmate, 25, 6646-6665, doi:10.1175/JCLID-11-00560.1.
  15. Dunne, J. P., and Coauthors, 2013: GFDL's ESM2 Global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clmate, 26, 2247-2267, doi:10.1175/JCLI-D-12-00150.1.
  16. Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallee, 2013: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 469-489, doi:10.5194/tc-7-469-2013.
  17. Gent, P. R., and G. Danabasoglu, 2011: Response to increasing southern hemisphere winds in CCSM4. J. Climate, 24, 4992-4998, doi:10.1175/JCLI-D-10-05011.1.
  18. Goelzer, H., P. Huybrechts, J. J. Furst, F. M. Nick, M. L. Andersen, T. L. Edwards, X. Fettweis, A. J. Payne, and S. Shannon, 2013: Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol., 59, 733-749, doi:10.3189/2013JoG12J182.
  19. Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model., 51, 37-72, doi:10.1016/j.ocemod.2012.04.003.
  20. Gornitz, V., S. Couch, and E. K. Hartig, 2001: Impacts of sea level rise in the New York City metropolitan area. Glob. Planet. Change, 32, 61-88. https://doi.org/10.1016/S0921-8181(01)00150-3
  21. Heo, T.-K., Y. Kim, K.-O. Boo, Y.-H. Byun, and C. Cho, 2018: Future sea level projections over the seas around Korea from CMIP5 simulations. Atmosphere, 28, 25-35 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2018.28.1.025
  22. Huss, M., and R. Hock, 2015: A new model for global glacier change and sea-level rise. Front. Earth Sci., 3, 54, doi:10.3389/fearth.2015.00054.
  23. IPCC, 2007: Observations: Oceanic Climate Change and Sea Level. Climate Change 2007: The Physical Science Basis. Cambridge University Press, 385-432.
  24. IPCC, 2013: Sea Level Change. Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1137-1216.
  25. IPCC, 2014: Climate Change 2014: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team et al. Eds., Cambridge University Press, 151 pp.
  26. IPCC, 2018: Summary for Policymakers. Global Warming of $1.5^{\circ}C$. World Meteorological Organization, 32 pp.
  27. Iversen, T., and Coauthors, 2013: The Norwegian Earth system model, NorESM1-M-Part 2: Climate response and scenario projections. Geosci. Model Dev., 6, 389-415, doi:10.5194/gmd-6-389-2013.
  28. Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model clmate configurations. Geosci. Model Dev., 4, 723-757, doi:10.5194/gmd-4-723-2011.
  29. Marzeion, B., A. H. Jarosch, and M. Hofer, 2012: Past and future sea-level change from the surface mass balance of glaciers. The Cryosphere, 6, 1295-1322, doi:10.5194/tc-6-1295-2012.
  30. Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O'Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky, 2007: Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 1064-1067. https://doi.org/10.1126/science.1143906
  31. Meyssignac, B., X. Fettweis, R. Chevrier, and G. Spada, 2017: Regional sea level changes for the twentieth and the twenty-first centuries induced by the regional variability in Greenland ice sheet surface mass loss. J. Climate, 30, 2011-2028, doi:10.1175/JCLI-D-16-0337.1.
  32. Mitrovica, J. X., M. E. Tamisiea, J. L. Davis, and G. A. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 1026-1029. https://doi.org/10.1038/35059054
  33. Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 1517-1520, doi:10.1126/science.1185782.
  34. Nick, F. M., A. Vieli, M. L. Andersen, I. Joughin, A. Payne, T. L. Edwards, F. Pattyn, and R. S. W. van de Wal, 2013: Future sea-level rise from Greenland's main outlet glaciers in a warming climate. Nature, 497, 235-238, doi:10.1038/nature12068.
  35. Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet Sci., 32, 111-149. https://doi.org/10.1146/annurev.earth.32.082503.144359
  36. Phillips, T., H. Rajaram, and K. Steffen, 2010: Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37, L020503, doi:10.1029/2010GL044397.
  37. Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502-505, doi:10.1038/nature10968.
  38. Radic, V., and R. Hock, 2010: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115, F01010, doi:1029/2009JF001373. https://doi.org/10.1029/2009jf001373
  39. Radic, V., A. Bliss, A. C. Beedlow, R. Hock, E. Miles, and J. G. Cogley, 2014: Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn., 42, 37-58, doi:10.1007/s00382-013-1719-7.
  40. Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 6377-6404. https://doi.org/10.5194/acp-12-6377-2012
  41. Slangen, A. B. A., and R. S. W. van de Wal, 2011: An assessment of uncertainties in using volume-area modelling for computing the twenty-first century glacier contribution to sea-level change. The Cryosphere, 5, 673-686, doi:10.5194/tc-5-673-2011.
  42. Slangen, A. B. A., C. A. Katsman, R. S. W. van de Wal, L. L. A. Vermeersen, and R. E. M. Riva, 2012: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dyn., 38, 1191-1209, doi:10.1007/s00382-011-1057-6.
  43. Slangen, A. B. A., M. Carson, C. A. Katsman, R. S. W. van de Wal, A. Kohl, L. L. A. Vermeersen, and D. Stammer, 2014: Projecting twenty-first century regional sea-level changes. Climatic Change, 124, 317-332, doi:10.1007/s10584-014-1080-9.
  44. Van de Wal, R. S. W., and M. Wild, 2001: Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GCM. Climate Dyn., 18, 359-366. https://doi.org/10.1007/s003820100184
  45. Vermeersen, B. L. A., and Coauthors, 2018: Sea-level change in the Dutch Wadden sea. Neth. J. Geosci., 97, 79-127, doi:10.1017/njg.2018.7.
  46. Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dyn., 40, 2091-2121, doi:10.1007/s00382-011-1259-y.
  47. Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414-431, doi:10.1134/S000143381004002X.
  48. von Salzen, K., and Coauthors, 2013: The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: Representation of physical processes. Atmos.-Ocean, 51, 104-125, doi:10.1080/07055900.2012.755610.
  49. Wada, Y., L. P. H. van Beek, F. C. S. Weiland, B. F. Chao, Y.-H. Wu, and M. F. P. Bierkens, 2012: Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett., 39, L09402, doi:10.1029/2012GL051230.
  50. Watanabe, M., and Coauthors, 2010: Improved climates simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 6312-6335, doi:10.1175/2010JCLI3679.1.
  51. Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Clmate, 24, 543-562, doi:10.1175/2010JCLI3878.1.
  52. Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute Earth system model Version 1 (MRI-ESM1)-Model description. Tech. Rep. MRI, no. 64, 83 pp.
  53. Watanabe, M., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3-Model description and basic performance. J. Meteor. Soc. Jpn., 90A, 23-64, doi:10.2151/jmsj.2012-A02.
  54. Zuo, Z., and J. Oerlemans, 1997: Contribution of glacier melt to sea-level rise since AD 1865: a regionally differentiated calculation. Climate Dyn., 13, 835-845. https://doi.org/10.1007/s003820050200