DOI QR코드

DOI QR Code

Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites

국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석

  • Kim, Hyeri (National Institute of Meteorological Sciences) ;
  • Hong, Je-Woo (Ecosystem-Atmosphere Process Lab, Department of Atmospheric Sciences, Yonsei University) ;
  • Lim, Yoon-Jin (National Institute of Meteorological Sciences) ;
  • Hong, Jinkyu (Ecosystem-Atmosphere Process Lab, Department of Atmospheric Sciences, Yonsei University) ;
  • Shin, Seung-Sook (National Institute of Meteorological Sciences) ;
  • Kim, Yun-Jae (National Institute of Meteorological Sciences)
  • Received : 2019.06.19
  • Accepted : 2019.08.26
  • Published : 2019.11.30

Abstract

Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

Keywords

References

  1. Arya, P. S., 2001: Introduction to micrometeorology, Voume. 79 second edition. Academic Press, 420 pp.
  2. Blyth, E., J. Gash, A. Lloyd, M. Pryor, G. P. Weedon, and J. Shuttleworth, 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeor., 11, 509-519, doi:10.1175/2009JHM1183.1.
  3. Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Q. J. R. Meteorol. Soc., 137, 1625-1640, doi:10.1002/qj.855.
  4. Bohnenstengel, S. I., I. Hamilton, M. Davies, and S. E. Belcher, 2014: Impact of anthropogenic heat emissions on London's temperatures. Q. J. R. Meteorol. Soc., 140, 687-698. https://doi.org/10.1002/qj.2144
  5. Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183-203. https://doi.org/10.1007/s003820050276
  6. Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530-543. https://doi.org/10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2
  7. Giorgi, F., R. Francisco, and J. Pal. 2003: Effects of a subgrid- scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation. J. Hydrometeor., 4, 317-333. https://doi.org/10.1175/1525-7541(2003)4<317:EOASTA>2.0.CO;2
  8. Gudmundsson, L., and Coauthors, 2012: Comparing largescale hydrological model simulations to observed runoff percentiles in Europe. J. Hydrometeor., 13, 604-620. https://doi.org/10.1175/JHM-D-11-083.1
  9. Harper, A. B., A. J. Wiltshire, P. M. Cox, P. Friedlingstein, C. D. Jones, L. M. Mercado, S. Sitch, K. Williams, and C. Duran-Rojas, 2018: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857-2873, doi:10.5194/gmd-11-2857-2018.
  10. Hong, J. W., and J. Hong, 2016: Changes in the Seoul metropolitan area urban heat environment with residential redevelopment. J. Appl. Meteor. Climatol., 55, 1091-1106, doi:10.1175/JAMC-D-15-0321.1.
  11. Hsieh, C.-I., G. Katul, and T.-W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765-772. https://doi.org/10.1016/S0309-1708(99)00042-1
  12. Jang, J. H., J. K. Hong, Y. H. Byun, H. J. Kwon, N. Y. Chae, J. H. Lim, and J. Kim, 2010: A sensitivity analysis of JULES land surface model for two major ecosystems in Korea: Influence of biophysical parameters on the simulation of gross primary productivity and ecosystem respiration. Korean J. Agric. For. Meteorol., 12, 107-121 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2010.12.2.107
  13. Jung, M., and Coauthors, 2011: Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07, doi:10.1029/2010JG001566.
  14. Koster, R. D., and Coauthors, 2011: The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill, J. Hydrometeor., 12, 805-822, doi:10.1175/2011JHM1365.1.
  15. MOLIT, 2018: 2018 Cadastral statistical annual report. Ministry of Land, Infrastructure and Transport, 929 pp.
  16. NIMS, 2017: Application of Boseong Standard Weather Observatory. National Institute of Meteorological Sciences, TRKO201800035591, 44 pp (in Korean with English abstract).
  17. Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeorol., 11, 171-184, doi:10.1175/2009JHM1116.1.
  18. Park, J., H.-S. Kim, S.-J. Lee, and T. Ha, 2018: Numerical evaluation of JULES surface tiling scheme with highresolution atmospheric forcing and land cover data. Sci. Online Lett. Atmos., 14, 19-24, doi:10.2151/sola.2018-004.
  19. Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 47, 919-935, doi: 10.1007/s00382-015-2879-4.
  20. Schmid, H. P., 1997: Experimental design for flux measurements: matching scales of observations and fluxes. Agric. Forest Meteor., 87, 179-200. https://doi.org/10.1016/S0168-1923(97)00011-7
  21. Tang, J. Y., W. J. Riley, C. D. Koven, and Z. M. Subin, 2013: CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application, Geosci. Model Dev., 6, 127-140, doi:10.5194/gmd-6-127-2013.
  22. van den Hoof, C., P. L. Vidale, A. Verhoef, and C. Vincke, 2013: Improved evaporative flux partitioning and carbon flux in the land surface model JULES: Impact on the simulation of land surface processes in temperate Europe. Agric. Forest Meteor., 181, 108-124, doi:10.1016/j.agrformet.2013.07.011.
  23. van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. D. Koster, S. I. Seneviratne, and H. Camargo, 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim. Dyn., 38, 349-362, doi:10.1007/s00382-010-0956-2.
  24. van Genuchten, M. Th., F. J. Leij, and S. R. Yates, 1991: The RETC code for quantifying the hydraulic functions of unsaturated soils. U.S. Environmental Protection Agency, Tech. Rep. EPA/600/2-91/065, 93 pp.
  25. Weedon, G. P., C. Prudhomme, S. Crooks, R. J. Ellis, S. S. Folwell, and M. J. Best, 2015: Evaluating the performance of hydrological models via cross-spectral analysis: case study of the Thames Basin, United Kingdom. J. Hydrometeor., 16, 214-231, doi: 10.1175/JHM-D-14-0021.1.
  26. WMO, 2008: Guide to meteorological instruments and methods of observation (WMO-No. 8). World Meteorological Organisation, 681 pp.
  27. Yang, Z., F. Dominguez, X. Zeng, H. Hu, H. Gupta, and B. Yang, 2017: Impact of irrigation over the california central valley on regional climate. J. Hydrometeor., 18, 1341-1357, doi:10.1175/JHM-D-16-0158.1.