DOI QR코드

DOI QR Code

Toluene Tolerance in Solvent Tolerant Pseudomonas sp. Strains By Antioxidant Defense Systems

항산화 방어 시스템에 의한 유기용매 내성세균 Pseudomonas sp. 균주에서의 톨루엔 내성

  • Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University) ;
  • Choi, Hye Jung (Department of Biology and Chemistry, Changwon National University) ;
  • Kim, Da Som (Department of Biology and Chemistry, Changwon National University) ;
  • Cho, Yong-Kweon (Department of Biohealth Science, Changwon National University) ;
  • Kim, Dong Wan (Department of Biohealth Science, Changwon National University)
  • 주우홍 (창원대학교 생물학화학융합학부) ;
  • 최혜정 (창원대학교 생물학화학융합학부) ;
  • 김다솜 (창원대학교 생물학화학융합학부) ;
  • 조용권 (창원대학교 생명보건학부) ;
  • 김동완 (창원대학교 생명보건학부)
  • Received : 2019.11.08
  • Accepted : 2019.12.12
  • Published : 2019.12.30

Abstract

To elucidate whether or not solvent-tolerant bacteria use anti-oxidative defense systems to defend themselves against toxic solvents, oxidative enzyme activity and total anti-oxidative capacity (T-AOC) were investigated in two tolerant strains of Pseudomonas sp. under toluene stress. The superoxide dismutase (SOD) activities of solvent tolerant BCNU 106 exhibited relatively increased levels at a toluene concentration of 100 mg/l, where those of solvent tolerant BCNU 171 increased at 200 mg/l. A greater than three-fold increase in catalase (CAT) levels was observed at concentrations of 200 and 300 mg/l in BCNU 106, and a two-fold increase was monitored at the same concentrations in BCNU 171. High glutathione S-transferase (GST) levels were also observed in the solvent tolerant bacteria. Higher levels of T-AOC was expressed in the solvent tolerant strains than in the ordinary non-tolerant KACC 10266. The highest plateau of SOD in BCNU 171 was observed at 1 hr of toluene exposure. CAT levels plateaued at 1 hr and 14 hr in BCNU 106 and reached the highest plateau at 3 hr in BCNU 171. The highest peak of T-AOC occurred at 9 hr in BCNU 106, and two high peaks occurred in BCNU 171, at 1 hr and at 9 hr of toluene exposure. The solvent-tolerant bacteria showed active antioxidant responses and could survive under harsh environments, including the presence of solvents, through means of antioxidant defense systems.

유기용매 내성세균들이 항산화 방어시스템에 의하여 독성 유기용매로부터 자신을 보호하는지를 밝히기 위해 두 균주의 유기용매 내성 세균에서 항산화 효소 활성과 총 항산화능(T-AOC)을 조사하였다. 톨루엔 농도 100 mg/l에서 유기용매 내성세균 BCNU 106의 슈퍼옥사이드 디스무타아제(SOD) 레벨은 상대적으로 증가하였으며, 유기용매 내성세균 BCNU 171의 경우에는 톨루엔 농도 200 mg/l에서 상대적으로 증가하였다. 톨루엔 농도 200와 300 mg/l에서 유기용매 내성세균 BCNU 106에서 카타라제(CAT) 레벨이 3배 이상 증가함이 확인되었고, BCNU 171에서는 CAT 레벨이 2배 이상 증가함이 확인되었다. 또한 유기용매 내성세균에서 글루타치온 S- 전이효소(GST) 레벨이 높은 것으로 조사되었다. 총 항산화능도 유기용매에 대하여 내성을 보이지 않는 일반 세균인 KACC 10266보다 유기용매 내성세균들에서 높은 것으로 조사되었다. 한편 톨루엔 농도 200 mg/l 존재 하에서 BCNU 171 균주의 SOD 레벨은 1시간 후 정점에 도달하였다. BCNU 106에서 1시간과 14시간 후 CAT 레벨이 정점에 도달하였고, BCNU 171균주에서는 3시간 후 정점에 도달하였다. T-AOC 레벨의 정점은 BCNU 106에서는 톨루엔에 노출 9시간 후에 나타났으며, BCNU 171에서는 1시간과 9시간 후 두 번 T-AOC 레벨의 정점이 나타났다. 모든 유기용매 내성 세균은 왕성한 항산화 방어 반응을 보였으며, 이러한 항산화 방어 시스템을 통하여 유기용매 내성 세균이 유기용매를 비롯한 가혹한 환경하에서 생존할 수 있는 것으로 판단된다.

Keywords

References

  1. Bianucci, E., Fabra, A. and Castro, S. 2012. Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts). Biometals 25, 23-32. https://doi.org/10.1007/s10534-011-9480-z
  2. Choi, H. J., Kim, S. A., Kim, D. W., Moon, J. Y., Jeong, Y. K. and Joo, W. H. 2008. Characterization of Pseudomonas sp. BCNU 171 tolerant to organic solvents. J. Basic Microbiol. 48, 473-479. https://doi.org/10.1002/jobm.200700410
  3. Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. https://doi.org/10.1007/s12257-012-0860-1
  4. Choi, H. J., Yoo, J. S., Jeong, Y. K. and Joo, W. H. 2014. Involvement of antioxidant defense system in solvent tolerance of Pseudomonas putida BCNU 106. J. Basic Microbiol. 54, 945-950. https://doi.org/10.1002/jobm.201300176
  5. Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D. J. and Hallsworth, J. E. 2015. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr. Opin. Biotechnol. 33, 228-259. https://doi.org/10.1016/j.copbio.2015.02.010
  6. Dominguez-Cuevas, P., Gonzalez-Pastor, J. E., Marques, S., Ramos, J. L. and de Lorenzo, V. 2006. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT 2440 cells exposed to toluene. J. Biol. Chem. 281, 11981-11991. https://doi.org/10.1074/jbc.M509848200
  7. Hallsworth, J. E., Heim, S. and Timmis, K. N. 2003. Chaotropic solutes cause water stress in Pseudomonas putida. Environ. Microbiol. 5, 1270-1280. https://doi.org/10.1111/j.1462-2920.2003.00478.x
  8. Hassan, H. M. 1989. Microbial superoxide dismutases. Adv. Genet. 26, 65-97. https://doi.org/10.1016/S0065-2660(08)60223-0
  9. Inoue, A. and Horikoshi, K. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338, 264-266. https://doi.org/10.1038/338264a0
  10. Lemire, J., Alhasawi, A., Appanna, V. P., Tharmalingam, S. and Appanna, V. D. 2017. Metabolic defense against oxidative stress: The road less travelled-so far. J. Appl. Microbiol. 123, 798-809. https://doi.org/10.1111/jam.13509
  11. Li, J. E., Nie, S. P., Xie, M. Y., Huang, D. F., Wang, Y. T. and Li, C. 2013. Chemical composition and antioxidant activities in immumosuppressed mice of polysaccharides isolated from Mosla chinensis Maxim cv. Jiangxiangru. Int. Immunopharmacol. 17, 267-274. https://doi.org/10.1016/j.intimp.2013.05.033
  12. McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5
  13. Sardessai, Y. N. and Bhosle, S. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog. 20, 655-660. https://doi.org/10.1021/bp0200595
  14. Siritantikorn, A., Johansson, K., Ahlen, K., Rinaldi, R., Suthiphongchai, T., Wilairat, P. and Morgenstern, R. 2007. Protection of cells from oxidative stress by microsomal glutathione transferase. Biochem. Biophys. Res. Commun. 355, 592-596. https://doi.org/10.1016/j.bbrc.2007.02.018
  15. Torres, S., Pandey, A. and Castro, G. R. 2011. Organic solvent adaptation of gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv. 29, 442-452. https://doi.org/10.1016/j.biotechadv.2011.04.002
  16. Zhang, Y., Meng, D., Wang, Z., Guo, H. and Wang, Y. 2012. Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiol. Lett. 334, 95-101. https://doi.org/10.1111/j.1574-6968.2012.02625.x