DOI QR코드

DOI QR Code

Phenotypic and Cell Wall Proteomic Characterization of a DDR48 Mutant Candida albicans Strain

  • El Khoury, Pamela (Department of Natural Sciences, Lebanese American University) ;
  • Salameh, Carell (Department of Natural Sciences, Lebanese American University) ;
  • Younes, Samer (Department of Chemistry, Technical University of Munich) ;
  • Awad, Andy (Department of Natural Sciences, Lebanese American University) ;
  • Said, Yana (Department of Natural Sciences, Lebanese American University) ;
  • Khalaf, Roy A. (Department of Natural Sciences, Lebanese American University)
  • Received : 2019.07.02
  • Accepted : 2019.09.04
  • Published : 2019.11.28

Abstract

Candida albicans is an opportunistic fungus possessing multiple virulence factors controlling pathogenicity. Cell wall proteins are the most important among these factors, being the first elements contacting the host. Ddr48 is a cell wall protein consisting of 212 amino acids. A DDR48 haploinsufficient mutant strain was previously found necessary for proper oxidative stress response and drug resistance. In this study, we aimed to further elucidate the role of Ddr48 by performing additional phenotypic characterization assays. A combinatory proteomic and bioinformatics approach was also undertaken to determine differentially expressed cell wall proteins. Results showed that the mutant strain exhibited a 10% decrease in adhesion mirrored by a 20% decrease in biofilm formation, and slight sensitivity to menadione, diamide, and SDS. Both strains showed similar hyphae formation, virulence, temperature tolerance, and calcofluor white and Congo red sensitivities. Furthermore, a total of 8 and 10 proteins were identified exclusively in the wild-type strain grown under filamentous and non-filamentous conditions respectively. Results included proteins responsible for superoxide stress resistance (Sod4 and Sod6), adhesion (Als3, Hyr4, Pmt1, and Utr2), biofilm formation (Hsp90, Ece1, Rim9, Ipp1, and Pra1) and cell wall integrity (Utr2 and Pga4). The lack of detection of these proteins in the mutant strain correlates with the observed phenotypes.

Keywords

References

  1. Sorgo AG, Heilmann CJ, Dekker HL, Brul S. 2010. Mass spectrometric analysis of the secretome of Candida albicans. Yeast 201027: 661-672.
  2. Southern P, Horbul J, Maher D, Davis DA. 2008. C. albicans colonization of human mucosal surfaces. PLoS One 3: e2067. https://doi.org/10.1371/journal.pone.0002067
  3. Viudes A, Peman J, Canton E, Ubeda P. 2002. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur. J. Clin. Microbiol. Infect. Dis. 21: 767-774. https://doi.org/10.1007/s10096-002-0822-1
  4. Martins N, Ferreira IC, Barros L, Silva S. 2014. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240. https://doi.org/10.1007/s11046-014-9749-1
  5. Barada G, Basma R, Khalaf RA. 2008. Microsatellite DNA genotyping and identification of Candida albicans from Lebanese clinical isolates. Mycopathologia 165: 115-125. https://doi.org/10.1007/s11046-008-9089-0
  6. Yazbek S, Barada G, Basma R, Mahfouz J. 2007. Significant discrepancy between real-time PCR identification and hospital identification of C. albicans from Lebanese patients. Med. Sci. Monit. 13: MT7-MT12.
  7. Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133-163. https://doi.org/10.1128/CMR.00029-06
  8. Cheng S, Clancy CJ, Checkley MA, Handfield M. 2003. Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol. Microbiol. 48: 1275-1288. https://doi.org/10.1046/j.1365-2958.2003.03521.x
  9. Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-28. https://doi.org/10.4161/viru.22913
  10. Jacobsen ID, Wilson D, Wachtler B, Brunke S. 2012. Candida albicans dimorphism as a therapeutic target. Expert. Rev. Anti. Infect. Ther. 10: 85-93. https://doi.org/10.1586/eri.11.152
  11. Brown AJ, Odds FC, Gow NA. 2007. Infection-related gene expression in Candida albicans. Curr. Opin. Microbiol. 10: 307-313. https://doi.org/10.1016/j.mib.2007.04.001
  12. Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748. https://doi.org/10.1038/nrmicro2636
  13. Gow NA, Latge J, Munro CA. 2017. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3).
  14. Masuoka J. 2004. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17: 281-310. https://doi.org/10.1128/CMR.17.2.281-310.2004
  15. Tronchin G, Poulain D, Herbaut J, Biguet J. 1981. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur. J. Cell. Biol. 26: 121-128.
  16. Chaffin WL. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72: 495-544. https://doi.org/10.1128/MMBR.00032-07
  17. De Groot PW, Hellingwerf KJ, Klis FM. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20: 781-796. https://doi.org/10.1002/yea.1007
  18. Erwig LP, Gow NA. 2016. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14: 163-176. https://doi.org/10.1038/nrmicro.2015.21
  19. Bitar I, Khalaf RA, Harastani H, Tokajian. 2014. Identification, typing, antifungal resistance profile, and biofilm formation of Candida albicans isolates from Lebanese hospital patients. Biomed. Res. Int. 2014: 931372.
  20. Thomas DP, Viudes A, Monteagudo C, Lazzell AL. 2006. A proteomic-based approach for the identification of Candida albicans protein components present in a subunit vaccine that protects against disseminated candidiasis. Proteomics 6: 6033-6041. https://doi.org/10.1002/pmic.200600321
  21. Dib L, Hayek P, Sadek H, Beyrouthy B. 2008. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Med. Sci. Monit. 14: BR113-BR121.
  22. Cleary IA, M acGregor NB, S aville S P, T homas DP. 2012. Investigating the function of Ddr48p in Candida albicans. Eukaryot Cell 11: 718-724. https://doi.org/10.1128/EC.00107-12
  23. Awad A, El Khoury P, Wex B, Khalaf RA. 2018. Proteomic analysis of a Candida albicans pga1 null strain. EuPA Open Proteom. 18: 1-6. https://doi.org/10.1016/j.euprot.2018.02.001
  24. Awad A, El Khoury P, Wex B, Khalaf RA. 2018. Tandem mass spectrometric cell wall proteome profiling of a Candida albicans hwp2 mutant strain. Curr. Mol. Pharmacol. 11: 211-225. https://doi.org/10.2174/1874467211666180509153228
  25. El Khoury P, Awad A, Wex B, Khalaf RA. 2018. Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence. PLoS One 3: e0194403. https://doi.org/10.1371/journal.pone.0194403
  26. Zohbi R, Wex B, Khalaf RA. 2014. Comparative proteomic analysis of a Candida albicans DSE1 mutant under filamentous and non-filamentous conditions. Yeast 31: 441-448. https://doi.org/10.1002/yea.3039
  27. Pedreno Y, Gonzalez-Parraga P, Martinez-Esparza M, Sentandreu R. 2007. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. Microbiology 153: 1372-1381. https://doi.org/10.1099/mic.0.2006/003921-0
  28. Bahnan W, Koussa J, Younes S, Abi Rizk M. 2012. Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition. Mycopathologia 174: 107-119. https://doi.org/10.1007/s11046-012-9533-z
  29. Plaine A, Walker L, Da Costa G, Mora-Montes HM. 2008. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet. Biol. 45: 1404-1414. https://doi.org/10.1016/j.fgb.2008.08.003
  30. Peeters E, Nelis HJ, Coenye T. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72: 157-65. https://doi.org/10.1016/j.mimet.2007.11.010
  31. Tsuchimori N, Sharkey LL, Fonzi WA, French SW. 2000. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect. Immun. 68: 1997-2002. https://doi.org/10.1128/IAI.68.4.1997-2002.2000
  32. Daher JY, Koussa J, Younes S, Khalaf RA. 2011. The Candida albicans Dse1 protein is essential and plays a role in cell wall rigidity, biofilm formation, and virulence. Interdiscip. Perspect. Infect. Dis. 2011: 504280.
  33. Munro CA, Whitton RK, Hughes HB, Rella M. 2003. CHS8-a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal. Genet. Biol. 40: 146-158. https://doi.org/10.1016/S1087-1845(03)00083-5
  34. Cabezon V, Llama-Palacios A, Nombela C, Monteoliva L. 2009. Analysis of Candida albicans plasma membrane proteome. Proteomics. 9: 4770-4786. https://doi.org/10.1002/pmic.200800988
  35. Barrett J, Brophy PM, Hamilton JV. 2005. Analysing proteomic data. Int. J. Parasitol. 35: 543-553. https://doi.org/10.1016/j.ijpara.2005.01.013
  36. Brasch J, Kreiselmaier I, Christophers E. 2003. Inhibition of dermatophytes by optical brighteners. Mycoses 46: 120-125. https://doi.org/10.1046/j.1439-0507.2003.00857.x
  37. Nodet P, Capellano A, Fevre M. 1990. Morphogenetic effects of Congo red on hyphal growth and cell wall development of the fungus Saprolegnia monoica. J. Gen. Microbiol. 136: 303-310. https://doi.org/10.1099/00221287-136-2-303
  38. Ene I, Walker LA, Schiavone M, Lee KK. 2015. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6: e00986-15.
  39. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6: e1000828. https://doi.org/10.1371/journal.ppat.1000828
  40. Frohner IE, Bourgeois C, Yatsyk K, Majer O. 2009. Candida albicans cell surface superoxide dismutases degrade hostderived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71: 240-252. https://doi.org/10.1111/j.1365-2958.2008.06528.x
  41. Rane HS, Bernardo SM, Hayek SR, Binder JL. 2014. The contribution of Candida albicans vacuolar ATPase subunit V 1 B, encoded by VMA2, to stress response, autophagy, and virulence is independent of environmental pH. Eukaryot. Cell 13: 1207-1221. https://doi.org/10.1128/EC.00135-14
  42. Alberti-Sequi C, Morales AJ, Xing H, Kessler MM. 2004. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cellsurface glycosidase in adhesion and virulence. Yeast 21: 285-302. https://doi.org/10.1002/yea.1061
  43. Spreghini E, Davis DA, Subaran R, Kim M. 2003. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell. 2: 746-755. https://doi.org/10.1128/EC.2.4.746-755.2003
  44. Klotz SA, Gaur NK, De Armond R, Sheppard D. 2007. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med. Mycol. 45: 363-370. https://doi.org/10.1080/13693780701299333
  45. Nobile CJ, Fox EP, Nett JE, Sorrells TR. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148: 126-138. https://doi.org/10.1016/j.cell.2011.10.048
  46. Nobile CJ, Andes DR, Nett JE, Smith FJ. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2: e63. https://doi.org/10.1371/journal.ppat.0020063
  47. Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA. 1998. Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J. Bacteriol. 180: 282-289. https://doi.org/10.1128/jb.180.2.282-289.1998
  48. Peltroche-Llacsahuanga H, Goyard S, D'Enfert C, Prill SK. 2006. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob. Agents. Chemother. 50: 3488-3491. https://doi.org/10.1128/AAC.00606-06
  49. Cornet M, Richard ML, Gaillardin C. 2009. The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res. Microbiol. 160: 219-223. https://doi.org/10.1016/j.resmic.2009.02.002
  50. Bassilana M, Blyth J, Arkowitz RA. 2003. Cdc24, the GDPGTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot. Cell 2: 9-18. https://doi.org/10.1128/EC.2.1.9-18.2003
  51. Almeida RS, Brunke S, Albrecht A, Thewes S. 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4: e1000217. https://doi.org/10.1371/journal.ppat.1000217

Cited by

  1. Cell Wall Proteome Profiling of a Candida albicans Fluconazole-Resistant Strain from a Lebanese Hospital Patient Using Tandem Mass Spectrometry-A Pilot Study vol.9, pp.6, 2021, https://doi.org/10.3390/microorganisms9061161