DOI QR코드

DOI QR Code

Stereoselective Bioreduction of Ethyl 3-Oxo-3-(2-Thienyl) Propanoate Using the Short-Chain Dehydrogenase/Reductase ChKRED12

  • Ren, Zhi-Qiang (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences) ;
  • Liu, Yan (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences) ;
  • Pei, Xiao-Qiong (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences) ;
  • Wu, Zhong-Liu (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences)
  • Received : 2018.04.30
  • Accepted : 2018.07.31
  • Published : 2019.11.28

Abstract

Ethyl (S)-3-hydroxy-3-(2-thienyl) propanoate ((S)-HEES) acts as a key chiral intermediate for the blockbuster antidepressant drug duloxetine, which can be achieved via the stereoselective bioreduction of ethyl 3-oxo-3-(2-thienyl) propanoate (KEES) that contains a 3-oxoacyl structure. The sequences of the short-chain dehydrogenase/reductases from Chryseobacterium sp. CA49 were analyzed, and the putative 3-oxoacyl-acyl-carrier-protein reductase, ChKRED12, was able to stereoselectively catalyze the NADPH-dependent reduction to produce (S)-HEES. The reductase activity of ChKRED12 towards other substrates with 3-oxoacyl structure were confirmed with excellent stereoselectivity (>99% enantiomeric excess) in most cases. When coupled with a cofactor recycling system using glucose dehydrogenase, the ChKRED12 was able to catalyze the complete conversion of 100 g/l KEES within 12 h, yielding the enantiopure product with >99% ee, showing a remarkable potential to produce (S)-HEES.

Keywords

References

  1. Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT. 2012. Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org. Biomol. Chem. 10: 6249-6265. https://doi.org/10.1039/c2ob25704a
  2. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. 2012. Engineering the third wave of biocatalysis. Nature 485: 185-194. https://doi.org/10.1038/nature11117
  3. Deshpande PP, Nanduri VB, Pullockaran A, Christie H, Mueller RH, Patel RN. 2008. Microbial hydroxylation of obromophenylacetic acid: synthesis of 4-substituted-2, 3-dihydrobenzofurans. J. Ind. Microbiol. Biotechnol. 35: 901-906. https://doi.org/10.1007/s10295-008-0363-4
  4. Hollmann F, Arends IW, Holtmann D. 2011. Enzymatic reductions for the chemist. Green Chem. 13: 2285-2314. https://doi.org/10.1039/c1gc15424a
  5. Ni Y, Xu J-H. 2012. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30: 1279-1288. https://doi.org/10.1016/j.biotechadv.2011.10.007
  6. Ren Z-Q, Liu Y, Pei X-Q, Wang H-B, Wu Z-L. 2015. Bioreductive production of enantiopure (S)-duloxetine intermediates catalyzed with ketoreductase ChKRED15. J. Mol. Catal. B Enzym. 113: 76-81. https://doi.org/10.1016/j.molcatb.2015.01.008
  7. Tang C-G, Lin H, Zhang C, Liu Z-Q, Yang T, Wu Z-L. 2011. Highly enantioselective bioreduction of N-methyl-3-oxo-3-(thiophen-2-yl) propanamide for the production of (S)-duloxetine. Biotechnol. Lett. 33: 1435-1440. https://doi.org/10.1007/s10529-011-0578-8
  8. Wada M, Yoshizumi A, Furukawa Y, Kawabata H, Ueda M, Takagi H, et al. 2004. Cloning and overexpression of the Exiguobacterium sp. F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl) propanoate to ethyl (S)-3-hydroxy- 3-(2-thienyl) propanoate. Biosci. Biotechnol. Biochem. 68: 1481-1488. https://doi.org/10.1271/bbb.68.1481
  9. Liu H, Hoff BH, Anthonsen T. 2000. Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer. Chirality 12: 26-29. https://doi.org/10.1002/(SICI)1520-636X(2000)12:1<26::AID-CHIR5>3.0.CO;2-Z
  10. Bymaster F, Beedle E, Findlay J, Gallagher P, Krushinski J, Mitchell S, et al. 2003. Duloxetine (Cymbalta$^{TM}$), a dual inhibitor of serotonin and norepinephrine reuptake. Bioorg. Med. Chem. Lett. 13: 4477-4480. https://doi.org/10.1016/j.bmcl.2003.08.079
  11. Deeter J, Frazier J, Staten G, Staszak M, Weigel L. 1990. Asymmetric synthesis and absolute stereochemistry of LY248686. Tetrahedron Lett. 31: 7101-7104. https://doi.org/10.1016/S0040-4039(00)97251-4
  12. Nakamura K, Yamanaka R, Matsuda T, Harada T. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
  13. Goldberg K, Schroer K, Lütz S, Liese A. 2007. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl. Microbiol. Biotechnol. 76: 249-255. https://doi.org/10.1007/s00253-007-1005-x
  14. Sun T, Li B, Nie Y, Wang D, Xu Y. 2017. Enhancement of asymmetric bioreduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine to corresponding (S)-enantiomer by fusion of carbonyl reductase and glucose dehydrogenase. Bioresour. Bioprocess. 4: 21. https://doi.org/10.1186/s40643-017-0151-y
  15. Toomey RE, Wakil SJ. 1966. Studies on the mechanism of fatty acid synthesis. XVI. Preparation and general properties of acyl-malonyl acyl carrier protein-condensing enzyme from Escherichia coli. J. Biol. Chem. 241: 1159-1165. https://doi.org/10.1016/S0021-9258(18)96816-X
  16. Fisher M, Kroon JTM, Martindale W, Stuitje AR, Slabas AR, Rafferty JB. 2000. The X-ray structure of Brassica napus ${\beta}$-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8: 339-347. https://doi.org/10.1016/S0969-2126(00)00115-5
  17. Birge CH, Vagelos PR. 1972. Acyl carrier protein. XVI. Intermediate reactions of unsaturated fatty acid synthesis in Escherichia coli and studies of fab B mutants. J. Biol. Chem. 247: 4921-4929. https://doi.org/10.1016/S0021-9258(19)44919-3
  18. Prelog V. 1964. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl. Chem. 9: 12. https://doi.org/10.1351/pac196409010119
  19. Huisman GW, Liang J, Krebber A. 2010. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Biol. 14: 122-129. https://doi.org/10.1016/j.cbpa.2009.12.003
  20. Tasnádi G, Hall M. 2013. Relevant practical applications of bioreduction processes in the synthesis of active pharmaceutical ingredients. Synth. Methods Biol. Act. Mol. 329-374.
  21. Liu Y, Tang T-X, Pei X-Q, Zhang C, Wu Z-L. 2014. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3, 5-bis (trifluoromethyl) acetophenone. J. Mol. Catal. B Enzym. 102: 1-8. https://doi.org/10.1016/j.molcatb.2014.01.009
  22. Ratovelomanana-Vidal V, Girard C, Touati R, Tranchier J, Hassine BB, Genet J. 2003. Enantioselective hydrogenation of ${\beta}$-keto esters using chiral diphosphine-ruthenium complexes: optimization for academic and industrial purposes and synthetic applications. Adv. Synth. Catal. 345: 261-274. https://doi.org/10.1002/adsc.200390021
  23. Takehara J, Qu JP, Kanno K, Kawabata H, Dekishima Y, Ueda M, et al. 2004. 3-Hydroxy-3-(2-Thienyl)Propionamide Compound, Process For Producing The Same, And Process For Producing 3-Amino-1-(2-Thienyl)-1-Propanol Compound Therefrom.
  24. Boulet SL, Filla SA, Gallagher PT, Hudziak KJ, Johansson AM, Karanjawala RE, et al. 2004. Propanamine derivatives as serotonin and norepinephrine reuptake inhibitors.
  25. Jung J, Park HJ, Uhm KN, Kim D, Kim HK. 2010. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
  26. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, et al. 2003. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143-144: 247-253. https://doi.org/10.1016/S0009-2797(02)00164-3
  27. Duax WL, Huether R, Pletnev V, Umland TC, Weeks CM. 2009. Divergent evolution of a Rossmann fold and identification of its oldest surviving ancestor. Int. J. Bioinform. Res. Appl. 5: 280-294. https://doi.org/10.1504/IJBRA.2009.026420
  28. Keller B, Volkmann A, Wilckens T, Moeller G, Adamski J. 2006. Bioinformatic identification and characterization of new members of short-chain dehydrogenase/reductase superfamily. Mol. Cell. Endocrinol. 248: 56-60. https://doi.org/10.1016/j.mce.2005.10.025
  29. Kallberg Y, Oppermann U, Jornvall H, Persson B. 2002. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci. 11: 636-641. https://doi.org/10.1110/ps.26902
  30. Rafferty JB, Simon JW, Baldock C, Artymiuk PJ, Baker PJ, Stuitje AR, et al. 1995. Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure 3: 927-938. https://doi.org/10.1016/S0969-2126(01)00227-1
  31. Shimakata T, Stumpf PK. 1982. Purification and characterizations of beta-Ketoacyl-[acyl-carrier-protein] reductase, betahydroxyacyl-[ acyl-carrier-protein] dehydrase, and enoyl-[acylcarrier-protein] reductase from Spinacia oleracea leaves. Arch. Biochem. Biophys. 218: 77-91. https://doi.org/10.1016/0003-9861(82)90323-X
  32. Kavanagh KL, Jornvall H, Persson B, Oppermann U. 2008. Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65: 3895-3906. https://doi.org/10.1007/s00018-008-8588-y
  33. Kim TS, Patel SK, Selvaraj C, Jung WS, Pan CH, Kang YC, et al. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. 6: 33438. https://doi.org/10.1038/srep33438
  34. Cui D, Zhang L, Yao Z, Liu X, Lin J, Yuan YA, et al. 2013. Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity. J. Biotechnol. 167: 386-392. https://doi.org/10.1016/j.jbiotec.2013.07.029
  35. Sheldon PS, Kekwick RG, Smith CG, Sidebottom C, Slabas AR. 1992. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus). Biochim. Biophys. Acta 1120: 151-159. https://doi.org/10.1016/0167-4838(92)90263-D
  36. Fisher M, Kroon JT, Martindale W, Stuitje AR, Slabas AR, Rafferty JB. 2000. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8: 339-347. https://doi.org/10.1016/S0969-2126(00)00115-5
  37. Ramachandran P, Jagtap SS, Patel SKS, Li J, Chan Kang Y, Lee J-K. 2016. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri ${\beta}$-glucosidase. RSC Adv. 6: 48137-48144. https://doi.org/10.1039/c5ra28017f
  38. Selvaraj C, Krishnasamy G, Jagtap SS, Patel SKS, Dhiman SS, Kim T-S, et al. 2016. Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QMpolarized ligand docking and molecular dynamics simulations. Biochem. Eng. J. 114: 244-256. https://doi.org/10.1016/j.bej.2016.07.008
  39. Cai P, An M, Xu L, Xu S, Hao N, Li Y, et al. 2012. Development of a substrate-coupled biocatalytic process driven by an NADPH-dependent sorbose reductase from Candida albicans for the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate. Biotechnol. Lett. 34: 2223-2227. https://doi.org/10.1007/s10529-012-1029-x
  40. Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH. 2011. Highly efficient synthesis of chiral alcohols with a novel NADHdependent reductase from Streptomyces coelicolor. Bioresour. Technol. 102: 7023-7028. https://doi.org/10.1016/j.biortech.2011.04.046
  41. Zhao FJ, Pei XQ, Ren ZQ, Wu ZL. 2016. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Appl. Microbiol. Biotechnol. 100: 3567-3575. https://doi.org/10.1007/s00253-015-7200-2
  42. Brem J, Liljeblad A, Paizs C, Toşa MI, Irimie F-D, Kanerva LT. 2011. Lipases A and B from Candida antarctica in the enantioselective acylation of ethyl 3-heteroaryl-3-hydroxypropanoates: aspects on the preparation and enantiopreference. Tetrahedron Asymmetry. 22: 315-322. https://doi.org/10.1016/j.tetasy.2011.01.027
  43. Soni P, Banerjee U. 2005. Biotransformations for the production of the chiral drug (S)-Duloxetine catalyzed by a novel isolate of Candida tropicalis. Appl. Microbiol. Biotechnol. 67: 771-777. https://doi.org/10.1007/s00253-004-1870-5