DOI QR코드

DOI QR Code

Decomposition of Wave Components in Sea Level Data using Discrete Wavelet Transform

이산형 웨이블릿 변환을 통한 조위 자료 내 파고 성분 분리

  • Yoo, Younghoon (Department of Civil Engineering, Inha university) ;
  • Lee, Myungjin (Department of Civil Engineering, Inha university) ;
  • Lee, Taewoo (Department of Civil Engineering, Inha university) ;
  • Kim, Soojun (Department of Civil Engineering, Inha university) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha university)
  • Received : 2019.11.04
  • Accepted : 2019.11.05
  • Published : 2019.11.30

Abstract

In this study, we investigated the effect of wave height in coastal areas using discrete wavelet transform in Taehwa river basin in Ulsan. Through the decomposition result of tide data using daubechies level 7 wavelet and Curve Fitting Function, we confirmed that detail components of d3 and d4 were semidiurnal and diurnal components and approximation component(a6) was the long period of lunar fortnight constituent. The decomposed tide data in six level was divided into tide component with periodicity and wave component with non-periodicity using autocorrelation function and fourier transform. Finally, we confirmed that the tide component is consisted 66% and wave component is consisted 34%. So, we quantitatively assessed the effect of wave on coastal areas. The result could be used for coastal flood risk management considering the effect of wave.

본 연구에서는 울산광역시 태화강 유역의 연안 지역을 대상으로 이산형 웨이블릿 변환을 이용하여 연안 지역의 파고의 영향성을 검토하였다. 이를 위해 Daubechies 7의 기저함수 및 Curve Fitting 함수를 이용하여 조위 자료를 분리한 결과 세분화 성분 내 반일주조성분(d3), 일주조성분(d4)의 단주기 성분 및 최종 분해된 근사 성분(a6)에서는 1년 주기의 장주기 성분을 확인하였다. 6단계로 분해된 조위 자료는 자기상관분석 및 푸리에 변환을 통해 주기성을 가지는 조석 성분과 비주기성을 가지는 파고성분으로 구분하였다. 최종적으로 조위 자료 내 조석 성분은 66% 및 파고 성분은 34%로 구성되어 있음을 확인하였다. 본 연구의 결과를 활용한다면, 파고의 영향을 고려한 연안 지역 홍수 관리의 기초자료로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Abbaszadeh, P. (2016). Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique. Water resources management, 30(5), pp. 1701-1721. [DOI 10.1007/s11269-016-1246-5]
  2. Ahn, SK, & Lee, DK. (2017). Estimation of Peak Water Level Based on Observed Records and Assessment of Inundation in Coastal Area - A Case Study in Haeundae, Busan City -, Korean Society of Environmental Impact Assessment, 26(6), pp. 445-456. [Korean Literature] [DOI https://doi.org/10.14249/eia.2017.26.6.445]
  3. Baron Fourier, J. B. J. (1822). Theorie analytique de la chaleur. F. Didot.
  4. Chen, W. B., & Liu, W. C. (2014). Modeling flood inundation induced by river flow and storm surges over a river basin. Water, 6(10), pp. 3182-3199. [DOI https://doi.org/10.3390/w6103182]
  5. Euler, L. (1748). Introductio in analysin infinitorum (Vol. 2). MM Bousquet.
  6. Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69(3), pp. 331-371. [DOI https://doi.org/10.1007/BF01456326]
  7. Han, HC (2015). Inundation Analysis of Coastal Urban Area Considering Sea Level Rise and Overflow of Drainage System Under Climate Change, Master's Thesis, Inha University, Incheon, Korea. [Korean Literature]
  8. Kang, JW, Kim, YS, Cho, HY & Shim, JS (2011). Characteristics of Nearshore Surge-Intensity. Korean Society of Coastal and Ocean Engineers. 23(6), pp. 458-465. [Korean Literature] https://doi.org/10.9765/KSCOE.2011.23.6.458
  9. Kang, JW, Kim, YS & Cho, HY (2013). Decomposition of Tidal Residual Data Using a Wavelet Method and Characteristic. Korean Society of Coastal and Ocean Engineers. 25(3), pp. 165-171. [Korean Literature] [DOI http://dx.doi.org/10.9765/KSCOE.2013.25.3.165]
  10. Kim, HK, & Kim, YT. (2013). Characteristics of Spatio-temporal Variability of Daily averaged Tidal, J. of the Korean Society of Marine Environment & Safety Residuals in Korean Coasts, 19(6), pp. 561-569. [Korean Literature] [https://doi.org/10.7837/kosomes.2013.19.6.561]
  11. Kwon, HH, & Moon, YI. (2005). Analysis of Hydrologic Time Series Using Wavelet Transform. Korea Water Resources Association, 38(6), pp. 439-448. [Korean Literature] [DOI https://doi.org/10.3741/JKWRA.2005.38.6.439]
  12. Lee, MJ, You, YH, Kim, SJ, Kim, KT, & Kim, HS. (2018). Decomposition of Water Level Time Series of a Tidal River into Tide, Wave and Rainfall-Runoff Components. Water, 10(11), pp. 1568. [DOI https://doi.org/10.3390/w10111568]
  13. Lee, SY (2016). Numerical Analysis of the likelihood of secondary flooding characteristics of coastal areas by the storm via a drainage system, Master's Thesis, University of Seoul, Seoul, Korea. [Korean Literature]
  14. Lee, SD (2016). Characteristics of Wave Attenuation with Coastal Wetland Vegetation. J. of Wetlands Research, 18(1), pp. 84-93. [Korean Literature] [DOI http://dx.doi.org/10.17663/JWR.2016.18.1.084]
  15. Lian, J., Xu, H., Xu, K., & Ma, C. (2017). Optimal management of the flooding risk caused by the joint occurrence of extreme rainfall and high tide level in a coastal city. Natural Hazards, 89(1), pp. 183-200. [DOI https://doi.org/10.1007/s11069-017-2958-4]
  16. Maheswaran, R., & Khosa, R. (2012). Comparative study of different wavelets for hydrologic forecasting. Computers & Geosciences, 46, pp. 284-295. [DOI https://doi.org/10.1016/j.cageo.2011.12.015]
  17. Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory-Part II: Sampling theory and complex waves. Geophysics, 47(2), 222-236. [DOI https://doi.org/10.1190/1.1441329]
  18. Muraleedharan, G., Lucas, C., Soares, C. G., Nair, N. U., & Kurup, P. G. (2012). Modelling significant wave height distributions with quantile functions for estimation of extreme wave heights. Ocean Engineering, 54, pp. 119-131. [DOI https://doi.org/10.1016/j.oceaneng.2012.07.007]
  19. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), pp. 379-423. [DOI https://doi.org/10.1002/j.1538-7305.1948.tb01338.x]
  20. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... & Midgley, P. M. (2013). Climate change 2013: the physical science basis. Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5). New York.
  21. Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., & Rosati, J. D. (2010). The potential of wetlands in reducing storm surge. Ocean Engineering, 37(1), 59-68. https://doi.org/10.1016/j.oceaneng.2009.07.018
  22. Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1), pp. 67-71.
  23. Xu, K, Ma, C, Lian, J., & Bin, L. (2014). Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment. PloS one, 9(10), e109341. [DOI https://doi.org/10.1371/journal.pone.0109341]
  24. Yoon, SB, Lee, JH, Kim, KH, & Song, JH. (2014). Development of Storm Sewer Numerical Model for Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall, J. of Korean Society of Coastal and Ocean Engineers, 24(6), pp. 292-299. [Korean Literature] [DOI https://doi.org/10.9765/KSCOE.2014.26.5.292]
  25. Zheng, F., Westra, S., Leonard, M., & Sisson, S. A. (2014). Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resources Research, 50(3), pp. 2050-2071. [DOI https://doi.org/10.1002/2013WR014616]