DOI QR코드

DOI QR Code

원심모형실험을 통한 차량방호울타리 지지말뚝의 수평방향 충격하중에 대한 극한지지력

Ultimate Capacity of Guardrail Supporting Pile Subjected to Lateral Impact Load Using Centrifuge Model Test

  • 윤종석 (공주대학교 건설환경공학과) ;
  • 이민지 (공주대학교 건설환경공학과) ;
  • 추연욱 (공주대학교 건설환경공학부)
  • Yun, Jong Seok (Dept. of Civil Environmental Engrg., Kongju National Univ.) ;
  • Lee, Min Jy (Dept. of Civil Environmental Engrg., Kongju National Univ.) ;
  • Choo, Yun Wook (Dept. of Civil Environmental Engrg., Kongju National Univ.)
  • 투고 : 2019.08.14
  • 심사 : 2019.10.27
  • 발행 : 2019.11.30

초록

차량이 도로를 이탈하여 성토부로 추락하는 것을 방지하기 위해 설치되는 연성 차량방호울타리는 사면부 시작점 근처에 도로방향으로 일렬로 근입된 무리말뚝과 무리말뚝 위에 부착되는 가드레일로 구성되어 있다. 차량방호울타리에 차량 충돌 시, 충돌에너지의 일부는 가드레일의 변형에 의해 흡수되며, 나머지 에너지는 가드레일을 지지하는 말뚝과 지반의 상호작용으로 저항하게 된다. 본 논문에서는 충격하중에 대한 말뚝과 지반의 상호작용을 원심모형실험을 수행하여 분석하였다. 풍화토로 다져진 경사지반에 설치된 단말뚝의 충격하중에 대한 극한지지력 및 거동특성을 분석하고자 하였다. 이를 위해 말뚝에 충격하중을 모사할 수 있는 하중재하시스템을 설계 및 구축하였다. 구축된 원심모형실험체 및 하중재하시스템을 이용하여 하중 및 지반조건에 대한 매개변수연구를 수행하였다. 최종적으로, 말뚝의 하중재하점에서 나타나는 하중-변위 곡선을 계측하여 충격극한지지력을 분석하였다. 또한, 휨모멘트 분포도로부터 산정된 지반반력 분포도를 도출하였고, 선행 연구결과와 비교하여 차량 방호울타리 지지말뚝의 지지거동을 분석하였다.

The safety barrier is installed on road embankment to prevent vehicles from falling into road side slope. Among the safety barrier, flexible guardrails are usually installed. The flexible guardrail generally consists of a protection cross-beam and supporting in-line piles. These guardrail piles are installed nearby slope edge of road embankment because the side area of the road is much narrow. The protection cross-beam absorbs impact energy caused by vehicle collision. The pile-soil interaction also absorbs the rest of the impact energy and then, finally, the flexible guardrail system resists the impact load. This paper aims to investigate the pile-soil interaction subjected to impact load using centrifuge model tests. In this study, a single pile was installed in compacted residual soil and loaded under lateral impact load. An impact loading system was designed and developed available on centrifuge tests. Using this loading system, a parametric study was performed and the parameters include types of loading and ground. Finally, the ultimate bearing capacity of supporting pile under impact load was analyzed using load-displacement curve and soil reaction pressure distributions at ultimate were evaluated and compared with previous studies.

키워드

참고문헌

  1. Ministry of Land, Infrastructure and Transport of Korea (MOLITK) (2014), "Vehicle Safety Barrier", Guideline on Installation and Management for Roadway Safety System, the Government of the Republic of Korea.
  2. Ministry of Land, Infrastructure and Transport of Korea (MOLITK) (2016), Recommended Practice for Full Scale Vehicle Collision Tests of Safety Barriers, the Government of the Republic of Korea.
  3. Han, K. J. (2018), Design of Semi-rigid Cable Barriers for High Impact Severity of 287 kJ and It's Performance to Small Vehicle Impacts, Ph.D. Thesis, Kongju National University, Republic of Korea, pp.31-34.
  4. Brinch-Hansen, J. (1961), "The Ultimate Resistance of Rigid Piles against Transversal Forces", Danish Geotechnical Institute, Copenhagen, Bulletin No. 12, 5-9.
  5. Broms, B. B. (1964), "Lateral Resistance of Piles in Cohesionless Soils", Journal of the Soil Mechanics and Foundations, ASCE, Vol.90, No.3), pp.123-156. https://doi.org/10.1061/JSFEAQ.0000614
  6. Chae, K. S., Ugai, K., and Wakai, A. (2001), "Three-dimensional Finite Element Studies of the Behavior of Short Pile Subjected to Lateral Load near a Sandy Slope", Journal of the Korean Geotechnical Society, KGS, Vol.17, No.3, pp.41-50.
  7. Chari, T. R. and Meyerhof, G. G. (1983), "Ultimate Capacity of Rigid Single Piles under Inclined Loads in Sand", Canadian Geotechnical Journal, 20, pp.849-854. https://doi.org/10.1139/t83-091
  8. Kim, D. S., Kim, N. R., Choo, Y. W., and Cho, G. C. (2013), "A Newly Developed State-of-the-art Geotechnical Centrifuge in Korea", J. Civ. Eng., KSCE, Vol.17, No.1, pp.77-84.
  9. Muthukkumaran, K. (2014), "Effect of Slope and Loading Direction on Laterally Loaded Piles in Cohesionless Soil", Int. J. Geomech., ASCE, Vol.14, No.1, pp.1-7 https://doi.org/10.1061/(ASCE)GM.1943-5622.0000293
  10. Mezazigh, S. and Levacher, D. (1998), "Laterally Loaded Piles in Sand: Slope Effect on P-Y Reaction Curves", Canadian Geotechnical Journal, 35, pp.433-441. https://doi.org/10.1139/t98-016
  11. Park H. S. and Ahn K. K. (2014), "Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail", Journal of the Korean Geo-Environmental Society, KGES, Vol.15, No.2, pp.67-74. https://doi.org/10.14481/jkges.2014.15.2.67
  12. Park J. O., Choo, Y. W., and Kim, D. S. (2009), "Evaluation of Bearing Capacity of Piled Raft Foundation on OC Clay Using Centrifuge and Numerical Modeling", Journal of the Korean Geotechnical Society, KGS, Vol.25, No.7, pp.23-33.
  13. Pajouh, M. A., Briaud, J. L., Lim, S. G., and Mirdamadi, A. (2017), "Dynamic Response of In-Line Pile Groups Subjected to Vehicle Impact", J. of Geotechnical and Geoenvironmental Eng, ASCE, Vol.143, No.7, 04017024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001676
  14. Pajouh, M. A., Schmidt, J., Bielenberg, R. W., Reid, J. D., and Faller, R. K. (2018), "Simplified Soil-Pile Interaction Modeling under Impact Loading", J. of Geotechnical Earthquake Engineering and Soil Dynamics, ASCE, V, GPS 292, 269-280.
  15. Petrasovits, G. and Award, A. (1972), "Ultimate Lateral Resistance of a Rigid Pile in Cohesionless Soil", Proc 5th European Conf on SMFE, Madrid, 3, 407-412.
  16. Rathod, D. and Muthukkumaran, K. (2019), "Experimental Investigation on Behavior of a Laterally Loaded Single Pile Located on Sloping Ground", Int. J. Geomech., ASCE, Vol.19, No.5, 04019021. https://doi.org/10.1061/(asce)gm.1943-5622.0001381
  17. Schofield, A. N. (1980), "Cambridge University Geotechnical Centrifuge Operation, Rankine Lecture", Geotechnique, Vol.30, No.3, pp.227-268. https://doi.org/10.1680/geot.1980.30.3.227
  18. Stone, K. J. L., Hensley, P.J., and R.N.Taylor (1991), "A centrifuge study of rectangular box culverts", Centrifuge'91 Balema, Rotterdam, pp.107-112.
  19. Taylor, R. N. (1995), "Centrifuge in modeling: principles and scale effects", Geotechnical centrifuge technology, Blackie Academic and Professional, Glasgow, U.K., pp.19-33.
  20. Wu, W. and Thomson, R. (2007), "A Study of the Interaction between a Guardrail Post and Soil during Quasi-static and Dynamic Loading", Int. J. of Impact Engineering, 34, 883-898. https://doi.org/10.1016/j.ijimpeng.2006.04.004
  21. Yun, J. S., Han, K. J., Ahn, H. I., Falcon, S. S., Kim, K. D., and Choo, Y. W. (2018), "Numerical Study on Static Behavior of Guardrail Supporting Piles Subjected to Horizontal Load", Proceedings of the Twenty-Eighth Int. Ocean Eng. Conference, 2, 506-512.
  22. AASHTO (2016), Manual for Assessing Safety Hardware, Washington DC.
  23. ASTM (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), D1557-12, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2012.
  24. ASTM (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), D2487-17, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2017.