DOI QR코드

DOI QR Code

A Conservative USCIP Simulation Method for Shallow Water

물 표면 시뮬레이션을 위한 보존적 USCIP법

  • 전세종 (세종대학교 소프트웨어학과) ;
  • 송오영 (세종대학교 소프트웨어학과)
  • Received : 2019.11.15
  • Accepted : 2019.11.29
  • Published : 2019.12.01

Abstract

We propose a physical simulation method based on the shallow water equation(SWE) to represent water surface effectively. In this paper, the water which can be represented has a much larger width compared to the depth does not have a large vertical direction flow. In order to calculate the water flow efficiently, we start with the shallow water equation as the governing equation, which is a simplified version of the Navier-Stokes equation. In order to numerically calculate the advection term of the SWE, we introduce a new conservtive USCIP(CUSCIP) method which improves the Constrained Interpolation Profile (CIP) method to preserve the physical quantity while increasing the numerical accuracy. The proposed method is based on Kim et. al.'s Unsplit Semi-lagrangian CIP[9], and calculates advection term with additional constraints on term that consider integral values. The experimental results show that the CUSCIP method is robust to the loss of physical quantity due to numerical dissipation, which improves wave detail and persistence.

이 논문은 물 표면을 효율적, 효과적으로 표현하기 위한 물리적 시뮬레이션 방법을 제안한다. 이 논문에서 표현하고자 하는 물은 깊이에 비해 너비가 매우 크고 상하 유동이 적은 상태로서, 이를 효율적으로 계산하기 위해 Navier-Stokes 방정식을 간략화한 천수방정식(shallow water equation)을 지배방정식으로 사용한다. 천수방정식의 대류항을 수치적으로 계산하기 위한 방법으로 기존의 Constrained Interpolation Profile(CIP)법을 개선하여, 수치적인 정확성을 높이고 물리량을 보존할 수 있는 Conservative Unsplit Semi-lagrangian CIP(CUSCIP)을 소개한다. 이 방법은 Kim 등이 제안한 USCIP[9]기법에서 사용하는 제약 조건에 적분값을 반영한 항을 추가하여 대류항을 계산한다. 실험결과를 통해, CUSCIP방법은 수치 소산(numerical dissipation)으로 인한 물리량 손실에 강건하여, 물결의 세밀함과 더불어 물결의 지속성이 향상됨을 알 수 있다.

Keywords

Acknowledgement

Supported by : 정보통신기획평가원

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP-2019-2016-0-00312)

References

  1. R. Courant, E. Isaacson, and M. Rwwa, "On the solution of nonlinear hyperbolic differential equations by finite differences," Comm. Pure Appl. Math., 5:243, 1952. https://doi.org/10.1002/cpa.3160050303
  2. J. Stam, "Stable fluids," Computer Graphics(Proc. ACM SIGGRAPH '99), 33:121-128, 1999.
  3. M. Kass and G.Miller, "Rapid, stable fluid dynamics for compyter graphics," Computer Graphics(Proc. ACM SIGGRAPH '90), 24(4):49-57, 1990.
  4. H.Takewaki, A.Nishiguchi, and T.Yabe, "Cubic interpolated pseudoparticle mothod(cip) for solving hyperbolic type equations," J. Comp. Phys., 61:261, 1985. https://doi.org/10.1016/0021-9991(85)90085-3
  5. H. Takewaki and T. Yabe, "The cubic interpolated pseudo particle mothod(cip): Application to nonlinear and multi-dimensional hyperbolic equations," J. Comp. Phys., 70:355, 1987. https://doi.org/10.1016/0021-9991(87)90187-2
  6. T. Yabe and T. Aoki, "A universal solver for hyperbolic equations by cubic polynomial interpolation i, one-dimensional solver," J. Comp. Phys. Comm., 66:219-232. 1991. https://doi.org/10.1016/0010-4655(91)90071-R
  7. T. Yabe and T. Aoki, "A universal solver for hyperbolic equations by cubic polynomial interpolation ii, two- and three dimensional solvers," J. Comp. Phys. Comm., 66:233-242, 1991. https://doi.org/10.1016/0010-4655(91)90072-S
  8. O.-y. Song. H. Shin, and H.-S. Ko, "Stable but Nondissipative Water," ACM Transaction on Gruphics Vol. 24, No.1, pp 81-97, 2005. https://doi.org/10.1145/1037957.1037962
  9. D. Kim, O.-y. Soog, and H.-S Ko, "A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting," Computer Graphics Forum(Proc. EUROGRAPHICS 2008) Vol. 27, No. 2, pp 467-476
  10. T. Yabe, R. Tanaka, T. Nakamura, and F, Xiao, "An exactly conservative semi-lagrangian scheme(cip-csl)in one dimension," Mon. Weather Rev., 129:332, 2001. https://doi.org/10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
  11. T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa, "Exactly conservative semi-lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique," J. Comp. Phys., 174:171-207, 2001. https://doi.org/10.1006/jcph.2001.6888
  12. T. Yabe and Y. Ognta, "Conservative semi-lagrangian cip technique for the shallow water equations," Comput. Mech. Vol. 46, No 1, pp. 125-134, 2010. https://doi.org/10.1007/s00466-009-0438-8
  13. A. T. Layton and M.v.d. Panne, "A numerically dfficient and stable algorithm for animating water waves," the Visual Couputer, Vol. 18, No. 1, pp. 41-53, 2002. https://doi.org/10.1007/s003710100131
  14. C. Yuksel, D. H. House, and J. Keyser, "Wave particles," ACM Transactions on Graphics (SIGGRAPH 2007) 26, 2, 2007.
  15. S. Jeschke and C. Wojlan, "Water Wave Packets," ACM Transactions on Graphics (SIGGRAPH 2017) 36, 4, 2017
  16. H. Lee and S. Han, "Solving the shallow water equations using 2D SPH particles for interactive applications," The Visual Computer, Vol. 26, No. 6-8, 865-872, 2010. https://doi.org/10.1007/s00371-010-0439-9
  17. J. J. Monaghan, "An introduction ot SPH," Com. Phy. Comm Vol. 48. pp. 88-96, 1988.
  18. J. Tessendorf, "eWave: Using an Exponential Solver on the iWave Problem," Technical Note, 2014.
  19. C. J. Horvath, "Empirical Directional Wave Spectra for Computer Graphics," In Proceedings of the 2015 Symposium on Digital Production (DigiPro '15), ACM.
  20. J. F. O'Brien and J. K. Hodgins, "Dynamic simulation of splashing fluids," In CA '95: Proc. Computer Animation, p. 198. Washington, DC: IEEE Computer Society, 1995.
  21. N. Thuerey, F. Sadlo, S. Schirm, M. Mueller-Fiscber, M. Gross, "Real-time Breaking Waves for Shallow Water Simulations," Proceedings of the Pacific Conference on Computer Graphics and Applications (Maui, Hawaii, USA, October 29-30, 2007), pp. 39-46, 2007
  22. G. Irving, E. Guendelman, F. Lossaso, and R. Fedkiw, "Efficient simulation of large bodies of water by coupling two and three dimensional techniques," ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3, 2006
  23. S. Osher and R. Fedkiw, "Level set methods and dynamic implicit surfaces," New York: Spinger-Verlag, 2002.