<연구논문>

원형 노치 CT 시편을 이용한 다양한 피로수명평가 절차의 보수성 평가

강주연^{*,1}·장동주^{*,1}·김준영^{**}·김상언^{***}·이종민^{****}·허남수^{*†}·김종성^{**}·김진원^{***}· 김윤재^{****}·김대수^{*****}

Investigation into Conservatism of Various Fatigue Life Evaluation Procedures Using Round-Notched CT Specimens

Ju-Yeon Kang^{*,1}, Dong-Joo Chang^{*,1}, Jun-Young Kim^{**}, Sang-Eun Kim^{***}, Jong-Min Lee^{****}, Nam-Su Huh^{*†}, Jong-Sung Kim^{**}, Jin-Weon Kim^{****}, Yun-Jae Kim^{*****} and Dae-Soo Kim^{*****}

(Received 16 October 2019, Revised 15 November 2019, Accepted 26 November 2019)

ABSTRACT

In this study, to evaluate conservatism of various fatigue life evaluation procedures, fatigue tests were conducted using compact tension (CT) specimens with a round notch, made of A516 Gr.70 carbon steel and A240 TP304 stainless steel, under load-controlled cyclic condition. Experimental fatigue failure cycles were measured and compared with predicted fatigue lives using two different life evaluation methods; (1) Design-By-Analysis (DBA) procedure given in ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200 and (2) structural stress-based approach provided in ASME B&PV Code, Sec. VIII, Div. 2, Part 5. To predict fatigue failure cycles, three-dimensional elastic finite element analysis was conducted. Fatigue lives were predicted by both design fatigue curve given in ASME B&PV Code, Sec. III, Div. 1, Appendices and best-fit fatigue curve suggested in NUREG/CR-6815 for the DBA procedure. Finally, fatigue lives evaluated by various methods were compared with test results, and then conservatism between each evaluation procedure was discussed.

Key Words : Finite element analysis (유한요소해석), Fatigue failure test (피로손상 시험), Fatigue life evaluation (피로수명평가), Notch specimen (노치 시편), Structural stress (구조응력)

fatigue curve

기호설명

		E , E_A , E_{ya}	= elastic modulus of the material
В	= thickness of the specimen	E_{ACS}	= elastic modulus of carbon steel at 21 $^{\circ}\mathrm{C}$
C, h	= material constants of welded design	E_D	= elastic modulus of the fatigue curve
		E_T	= elastic modulus at average temperature
1 †	Equally contributed to this work 책임저자, 회원, 서울과학기술대학교 기계시스템디자인공학과		of the transition state
	E-mail : nam-su.huh@seoultech.ac.kr	$\Delta \varepsilon$	= local nonlinear structural strain range
*	TEL: (02)970-6317 FAX: (02)974-8270 서운과하기숙대하고 기계시스텐디자이곳하과	F_i	= nodal force
**	세종대학교 원자력공학과	f_E	= environmental modification factor
***	조선대학교 원자력공학과	f_i	= line force
****	고려대학교 기계공학과	f	= fatigue improvement factor
****	한국전력기술(주)	<i>J1</i>	laugue improvement lactor

f_M	= mean stress correction factor
f_{MT}	= material and temperature correction factor
Ι	= correction factor
K_{css} , n_{css}	= material parameter for the cyclic
	stress-strain curve model
Ke	= elastic-plastic effect factor
l_i	= length between nodes
M_i	= nodal moment
т, п	= values of the material parameters
m_i	= line moment
m _{ss}	= exponent used in a fatigue analysis
	based on the structural stress
Ne	= test end cycles
Nf	= allowable stress cycles
N_i	= crack initiation cycles
N _{i.avg}	= average experimental crack initiation cycles
P_{max}	= maximum load of cycles
P_{min}	= minimum load of cycles
R	= load ratio
Salt	= alternating stress intensity
S alt	= modified alternating stress intensity
S_{ij}	= principal stress differences
S_m	= design stress intensity
S_n	= range of primary plus secondary stress
	intensity
$S_{r.ij}$	= absolute magnitude of the range of
	principal stress differences
S_y	= yield strength
ΔS_{ess}	= equivalent structural stress range parameter
$\sigma_{1.2.3}$	= principal stresses
σ_{e}	= structural stress
σ_{b}	= bending stress
σ_{m}	= membrane stress
$\Delta \sigma$	= local nonlinear structural stress range
$\Delta \sigma^e$	= elastic structural stress range
$\Delta \sigma^e$.	= elastic structural bending stress range
$\Delta \sigma^e$	= elastic structural membrane stress range
0 m	= this mass to the small successful distribution
i t	- unexness to the crack propagation direction
less	- suuctural stress effective thickness
V W	= roisson's ratio
W	= width of the specimen

1. 서 론

피로파괴는 구조물 설계에 있어 우선적으로 고 려되어야 할 파손 모드이다. 피로파괴는 미시적 수 준의 복잡한 금속학적 현상으로 정확한 모델링이 어려움에도 불구하고 구조물의 신뢰성 확보를 위 해 설계 시 반드시 고려되어야 한다.⁽¹⁾ 따라서 많은 피로수명평가 절차들이 개발되어 왔으며, ASME 기술기준에는 구조물에 대한 다양한 피로수명평가 절차가 제시되어 있다. ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200에 제시된 해석에 의한 설 계(Design-By-Analysis, DBA)에는 원자력발전소 안 전 1등급 기기에 대한 피로수명평가 절차가 제시 되어 있으며,⁽²⁾ ASME B&PV Code, Sec. VIII, Div. 2, Part 5에는 일반산업 압력용기의 용접부에 대한 피로수명평가 절차가 제시되어 있다.⁽³⁾

ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200의 DBA 평가 절차⁽²⁾는 피로수명 기준으로 비파괴 검사를 통해 감지할 수 있는 크기의 피로균 열 발생 지점을 고려하며, 설계피로선도 도출을 위 한 피로시험 시 약 3 mm로 피로균열 발생 크기를 가정한다. 피로수명 예측 시 다축 응력 상태를 고 려하기 위해 Tresca 유효응력 개념의 응력강도를 계산하며, 구조물의 응력강도를 계산하기 위해 유 한요소해석을 수행한다. 하지만 유한요소해석의 특 성상 국부 지점의 전체 응력은 유한요소 크기에 민 감하므로 유한요소 크기에 의한 전체 응력의 민감 도 분석이 선행되어야 한다. 또한, 이 절차는 피로 수명을 매우 보수적으로 예측한다고 알려져 있다.

한편, ASME B&PV Code, Sec. VIII, Div. 2, Part 5의 구조응력 기반 평가 절차⁽³⁾는 피로수명 기준을 피로균열이 압력경계 두께를 관통하는 시점으로 고 려한다. 피로수명 예측을 위해 구조응력 개념이 사용 되며, 구조응력은 유한요소 크기에 민감한 전체 응력 대신 피로손상이 클 것으로 예상되는 지점을 포함하 는 응력구분선에서 막응력과 굽힘응력을 이용하여 피로수명을 예측하므로 유한요소 크기에 둔감하다.

본 연구에서는 A240 TP304 스테인리스강(Stainless Steel, SS) 및 A516 Gr.70 탄소강(Carbon Steel, CS)으로 제작된 원형 노치 CT 시편을 사용하여 각 재료별 네 가지 하중조건을 부여하여 피로손상 시험을 수행 하였다. 피로수명평가를 위해 탄성 유한요소해석을 수행하였으며, 앞서 언급한 두 평가 절차를 사용하였 다. DBA 평가 절차에 의한 피로수명평가 시 NUREG/CR-6815와 ASME B&PV Code, Sec. III, Div. 1, Appendices에 각각 제시된 최적피로선도와 설계피 로선도를 사용하였다.^(4, 5) 또한, 구조응력 기반 평가 절차 이용 시 용접부 설계피로선도를 이용하였다.⁽³⁾ 이를 통해 원형 노치 CT 시편에 대한 피로수명을 예측하였으며 평가결과를 시험결과와 비교하여 각 피로평가 절차의 보수성을 검토하였다.

2. 피로손상 시험

2.1 시험 재료

피로손상 시험에는 원전 2차측 주요 기기에 사용되는 대표적인 재료인 A240 TP304 SS와 A516 Gr.70 CS가 사용되었다. 시험에 사용된 재료는 두께가 30 mm인 판상으로 제작된 것으로 각 재료의 화학조성 과 기계적 물성치는 Table 1과 2에 정리된 바와 같다. 재료의 화학조성은 재료성적서에 제시된 값이며, 기 계적 물성치는 상온 인장시험을 통해 확보된 것이다.

2.2 시편 및 시험 방법

2.2.1 노치 시편

다양한 응력집중 부위가 있는 기기에서 반복하중 에 따른 피로손상을 모사하기 위해 시험에는 Fig. 1과

Table 1	l Chemical	composition	of	tested	materials	
					(t+ t+ t+ t+	0/)

						(unit:	wi. 70)
Materials	С	Si	Mn	Р	S	Ni	Cr
	0.05	0.45	1.10	0.029	0.003	8.1	18.1
A240 TP304_SS	Мо	Cu	N	Nb	Ti		
11504 55	0.19	0.26	0.05	0.01	0.00		
A516 Gr.70 CS	С	Si	Mn	Р	S	Ni	Cr
	0.1974	0.320	1.060	0.0110	0.0028	0.013	0.021
	Мо	Al	Cu	Nb	Ti	V	
	0.000	0.027	0.012	0.001	0.0017	0.011	

Table 2 Mechanical properties of tested materials

Materials	Yield strength [MPa]	Tensile strength [MPa]	Uniform elongation [%]	Total elongation [%]	Reduction of area [%]
A240 TP304 SS	270.9	786.4	49.8	58.7	74.7
A516 Gr.70 CS	349.0	503.7	17.3	30.2	69.5

같은 형상의 노치 시편이 사용되었다. 시편의 기본 형상은 ASTM E1820-15⁽⁶⁾에 제시된 파괴인성시험용 1T-CT 시편과 동일하다. 즉, 시편의 두께(*B*)가 25.4 mm이고 폭(*W*)이 50.8 mm인 CT 시편이다. 다만, 균열 대신 반경이 6.0 mm인 원형노치가 고려되었으며, 노치 선단까지 길이는 34 mm이다. Fig. 1(b)는 가공이 완료된 노치 시편을 나타낸다.

2.2.2 시험조건 및 절차

피로손상 시험은 하중진폭이 일정한 반복하중조 건에서 진행되었으며, 각 재료별로 크기가 다른 4 개의 하중조건이 적용되었다. 모든 시험은 상온에 서 수행되었으며, 각 조건별로 2회씩 시험이 진행 되었다. 시험에 적용된 하중의 크기에 관계없이 시 험에 적용된 반복하중의 최소/최대 하중 비(*R*)는 0.1이다. Table 3은 각 재료별로 시험에 적용된 반 복하중의 조건을 정리한 것이다.

피로손상 시험은 하중제어 모드로 Table 3의 하 중조건에서 진행되었다. 반복하중은 삼각파 형태 로, 일부 조건을 제외하면 *f* = 1 Hz 시험속도로 시험이

(a) Dimensions of notch specimen (unit: mm)

Fig. 1 Notch specimens used for the experiment

진행되었다. 초당 20개씩 하중과 변위 데이터를 취 득하였으며, 노치 선단에 고배율 현미경을 설치하 여 시편에서 균열생성 여부를 감시하고, 균열의 형 상을 촬영하였다. 시험이 진행되는 동안 균열이 개 시되는 사이클(N_i)을 기록하고 균열이 뚜렷이 관찰 되는 시점(N_e)에 시험을 중지하였다. 단, 일부 시편 의 경우에는 시험 상의 오류로 균열개시 시점을 확 인하지 못하고 균열이 상당히 성장한 이후에 시험 을 종료하였다.

시험에는 50 kN 용량의 로드셀이 장착된 동적시험 기가 사용되었으며, 변위는 시험기의 가진기에 내장 된 LVDT를 이용하여 측정하였다. Fig. 2는 노치 시편 을 이용한 피로손상 시험 장면을 보여주고 있다.

Materials	Spec. ID	P _{max,D} [kN]	P _{min,D} [kN]	R	f [Hz]
	T4-3	29.32	2.93	0.1	1
	T4-6	29.32	2.93	0.1	1
	T4-2	24.01	2.40	0.1	1
A240	T4-5	24.01	2.40	0.1	1
TP304 SS	T4-1	20.59	2.06	0.1	1
	T4-4	20.59	2.06	0.1	1
	T4-7	17.71	1.77	0.1	1
	T4-8	17.71	1.77	0.1	1
	S7-3	21.33	2.13	0.1	2
	S7-6	21.33	2.13	0.1	1
	S7-2	18.28	1.83	0.1	2
A516	S7-5	18.28	1.83	0.1	1
Gr.70 CS	S7-4	16.12	1.61	0.1	1
	S7-9	16.12	1.61	0.1	1
	S7-7	14.16	1.42	0.1	1
	S7-8	14.16	1.42	0.1	1

Table 3 Loading conditions applied to the experiment

Fig. 2 Test set-up for the experiment

2.3 시험결과

2.3.1 손상 모드

Fig. 3은 시험이 완료된 A240 TP304 SS 시편과 A516 Gr.70 CS 시편의 시험 후 사진과 각 시편에서 균열이 생성된 노치부의 사진을 나타낸 것이다. A240 TP304 SS 시편의 경우, 시험에 고려된 모든 하중조건에서 시편이 변형되었으며, 하중진폭이 클 수록 변형이 뚜렷하였다. 반면, A516 Gr.70 CS 시편 의 경우에는 하중이 가장 큰 조건(*P*_{max,D} =21.33 kN) 을 제외하면 반복하중이 작용되는 동안 시편의 변 형은 미미하였다. 모든 시편은 재료 종류와 반복하 중의 크기에 관계없이 거의 유사한 손상 형태를 보 였다. 즉, 시편의 노치부 중심에서 여러 개의 균열이 생성되고 서로 결합되어 하나의 큰 균열로 진전하 였다.

2.3.2 손상 거동

Figs. 4와 5는 피로손상 시험에서 취득한 하중-변 위 곡선과 변위-시간 곡선의 예를 각각 나타낸 것 이다. Fig. 4에 나타낸 바와 같이 A240 TP304 SS 시 편에서는 첫 사이클의 하중 작용 시 시편에서 변위 가 크게 증가하였다. 이러한 거동은 시험에 고려된 모든 하중조건에서 관찰되었으며, 변위는 반복하 중의 진폭이 클수록 증가하였다. 반면, A516 Gr.70 CS 시편에서는 작용하중이 가장 큰 조건(*P*max,*D*

(a) A240 TP304 SS ($P_{max,D} = 17.71$ kN)

(b) A516 Gr.70 CS ($P_{max,D} = 16.12$ kN) Fig. 3 Photographs of post-test specimens

=21.33 kN)을 제외하면 첫 사이클 하중 작용 시 변 위의 증가는 뚜렷하게 관찰되지 않았으며, 가장 큰 하중조건에서도 약 2 mm 정도의 변위 증가를 보였 다. 이러한 하중-변위 거동은 앞서 시험 후 시편에 서 확인된 시편의 변형과 잘 일치한다.

한편, 반복하중에 따른 변위의 변화 경향(Fig. 5) 을 살펴보면, A240 TP304 SS 시편에서는 하중의 진폭에 관계없이 반복하중이 작용됨에 따라 초기 에 변위의 진폭과 평균값이 증가하다 수렴하였으 며, 균열개시가 관찰되기 직전에 변위의 평균값이 다시 급격히 증가하는 경향을 보였다. A516 Gr.70 CS 시편에서는 반복하중에 따른 변위의 변화가 작 용하중의 진폭에 따라 차이를 보였다. 진폭이 작은 경우에는 변위의 진폭과 평균이 거의 일정한 값을 유지하다 균열개시 직전에 급격히 증가하는 반면,

Fig. 5 Load and displacement data of A240 TP304 SS and A516 Gr.70 CS specimens under cyclic load

진폭이 큰 경우에는 반복하중 초기에 변위의 진폭 과 평균값이 증가하다 수렴하였으며, 균열개시 직 전에 변위의 평균값이 급격히 증가하였다. 일정한 하중진폭 조건에서 반복하중에 따른 변위의 증가 와 수렴 거동은 재료의 반복경화 현상에 기인한 것 이며,⁽⁷⁾ A516 Gr.70 CS 시편에서 하중의 진폭이 작 을 때 반복하중에 따른 변위의 변화가 관찰되지 않 는 것은 반복하중이 탄성영역에서 작용되기 때문 으로 판단된다.

한편, Table 4는 시험에서 주어진 각 시편의 균열 개시(N_i)와 시험종료(N_e) 시점을 정리한 것이다. 또 한, 각 시편에서 실제 측정한 반복하중의 최대값 (P_{max,R})과 최소값(P_{min,R})을 나타내었다. Fig. 6은 Table 4에서 주어진 균열개시 시점을 반복하중의 최대값에 따라 나타낸 것이다. 그림에서 알 수 있는 바와 같이 재료 종류에 관계없이 반복하중의 크기가 증가함에 따라 시편의 손상시점이 지수함수적으로

		Measure	ed loads	Cycles to failure		
Mater.	ID	P _{max,R} [kN]	P _{min,R} [kN]	N _i [cycles]	Ne [cycles]	
	T4-3	28.92	0.85	7750	8185	
	T4-6	28.87	0.86	7445	8126	
	T4-2	23.69	0.68	9887	10538	
A240	T4-5	23.07	0.69	11752	12504	
TP304 SS	T4-1	20.32	0.59	15790	15817	
	T4-4	20.31	0.62	17784	18710	
	T4-7	17.42	0.52	22866	24268	
	T4-8	17.42	0.55	24135	25935	
	S7-3	20.82	0.94	8070	8886	
	S7-6	21.02	0.62	6184	7354	
	S7-2	17.85	0.80	11290	12530	
A516	S7-5	18.01	0.53	11450	12207	
Gr.70 CS	S7-4	15.88	0.47	-	25565	
	S7-9	15.86	0.51	24089	25068	
	S7-7	13.96	0.44	46112	47670	
	S7-8	13.94	0.44	44973	46899	

Table 4 Results of fatigue failure tests on A240 TP304SS and A516 Gr.70 CS

Fig. 6 Number of cycles to failure of specimens

감소하였다. 또한, 전체적으로 A240 TP304 SS 시 편에 비해 A516 Gr.70 CS 시편이 동일한 하중조건 에서 반복하중에 대한 피로수명이 짧은 것을 잘 보 여주고 있다.

3. 유하요소해석

3.1 해석 대상

본 연구에서는 선형 탄성해석을 수행하였기 때문

에 모사시편에 작용하는 하중과 유한요소해석 결과 응력 간에 비례 관계가 성립한다. 따라서 A240 TP304 SS T4-3/6 시편과 A516 Gr.70 CS S7-3/6 시편 의 시험조건을 대표적으로 선정하여 유한요소해석 을 수행하였다.

Fig. 7은 피로평가 시 사용한 유한요소 모델을 나타 낸 것이며, 대칭성을 고려하여 1/2만을 모델링하였다.

Fig. 7(a)는 DBA 평가 절차 사용 시 고려한 유한 요소모델을 나타낸다. 노치 선단에서의 요소 크기 는 0.30 mm로 조밀하게 적용하였으며, 2차 저감적 분 요소인 C3D20R 요소를 사용하였다.

Fig. 7(b)는 구조응력 기반 평가 절차 사용 시 고 려한 유한요소 모델을 나타낸다. 노치 선단에서의 요소 크기는 1.29 mm로 Fig. 7(a) 모델에 비해 큰 요소망을 적용하였으며, 1차 연속체 요소인 C3D8 요소를 사용하였다.

3.2 해석 조건

상용 해석 프로그램인 ABAQUS 2018을 사용하 여 3차원 탄성 유한요소해석을 수행하였다. 시편의 홀 부분에 Multi-Point Constraint (MPC) 옵션을 사 용하여 인장하중을 부여하였다. Table 5에는 유한 요소해석 및 피로평가 시 고려한 각 재료의 탄성계 수(*E*)와 푸아송 비(*v*)를 나타내었다.

3.3 해석 결과

Fig. 8은 S7-3/6 시편의 최대하중 작용 시 유한요 소 모델의 응력장을 나타낸다. 해석 결과, 시험과

Table 5 Elastic modulus and Poisson's ratio

Materials	E [GPa]	ν
A240 TP304 SS	195	0.31
A516 Gr.70 CS	202	0.30

동일하게 노치 선단의 중심에서 최대 응력이 발생 한다. Table 6은 재료별 대표 시편에 최대 인장하중 작용 시 계산되는 주응력($\sigma_{1,2,3}$)과 Tresca 응력의 크기를 나타낸다.

4. 피로수명평가

피로수명평가 절차를 적용하여 반복하중조건에 서 노치 시편의 피로손상을 예측하고 시험 결과와 비교함으로써 평가 방법의 신뢰성과 보수성을 확 인하였다. 따라서 유한요소해석으로부터 계산된 응력을 이용하여 ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200에 제시된 DBA 평가 절차와 ASME B&PV Code, Sec. VIII, Div. 2에 제시된 구 조응력 기반 평가 절차에 따른 모사시편의 피로수 명을 예측하였다.^(2, 3)

시험의 하중비는 0.1로 일정하게 설계되었으나 실제 측정된 결과로 하중비를 계산할 시 하중비는 0.02~0.05로 0에 가까운 것을 확인하였다. 따라서 피로평가 시 반복하중의 하중비를 0으로 고려하여 피로수명을 계산하였다.

4.1 ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200, DBA 피로수명평가 절차⁽²⁾

모사시편의 경우 하중이 작용하는 동안 주응력

Fig. 8 Stress field of the S7-3/6 specimen made from A516 Gr.70 CS

Table 6 Tresca and principal stresses from FE results

Specimen	$\sigma_{_{1}}$	$\sigma_{_2}$	$\sigma_{_3}$	Tresca stress
No.	[MPa]	[MPa]	[MPa]	[MPa]
T4-3/6	1832.55	304.77	1.86	1830.69
S7-3/6	1315.19	212.22	1.34	1313.86

방향이 일정하므로 반복응력강도(Sait)는 유한요소 해석을 통해 계산된 주응력을 이용하여 결정한다. 반복응력강도는 각 주응력차(Sij)가 변동하는 범위 의 극대 및 극솟값을 결정하고 이 변동범위 절대크 기(Sr.ij)의 절반으로 계산한다. Table 7에는 각 시편 의 반복응력강도 계산 결과를 나타내었다.

앞서 선형 탄성해석을 수행하였으므로 소성 변 형의 영향을 고려하기 위해 반복응력강도에 탄소 성 보정계수(*K*_e)를 곱하여 보정한다. 탄소성 보정 계수는 다음 식에 의해 결정한다.

$$K_{e} = 1.0, \quad \text{for } S_{n} \leq 3S_{m}$$
(1)
= 1.0 + [(1 - n) / n(m - 1)](S_{n} / 3S_{m} - 1),
for 3S_{m} < S_{n} < 3mS_{m}
= 1 / n, for $S_{n} \geq 3mS_{m}$

여기서 *S*_n은 1차 및 2차 응력 합의 강도 범위이며, *m*과 *n*은 ASME B&PV Code, Sec. III, Div. 1, Appendices, Table XIII-3450-1에 제시되어 있는 재 료변수이다.⁽⁵⁾ *S*_m은 재료의 허용응력강도를 의미하 며 ASME B&PV Code, Sec. II, Part D에 제시되어 있다.⁽⁸⁾ Table 8에 재료별 *m*, *n*과 *S*_m을 나타내었으 며, Table 9에 각 시편에서 계산된 *S*_n, *K*_e를 나타내 었다.

피로선도에 제시된 탄성계수(*E*_D)와 피로평가에 사용된 재료의 탄성계수(*E*_A)가 다른 경우 탄성계수 차이에 의한 영향을 두 탄성계수의 비(*E*_D/*E*_A)로 고 려하며, 피로평가 시 사용한 값을 Table 8에 나타내 었다.

Materials	Specimen No.	P _{max} [kN]	P _{min} [kN]	∆P [kN]	S _{alt} [MPa]
	T4-3/6	28.92	0	28.92	915.35
A240	T4-2/5	23.69	0	23.69	749.81
TP304 SS	T4-1/4	20.23	0	20.23	640.30
	T4-7/8	17.42	0	17.42	551.36
	S7-3/6	20.82	0	20.82	656.93
A516	S7-2/5	17.85	0	17.85	563.22
Gr.70 CS	S7-4/9	15.86	0	15.86	499.80
	S7-7/8	13.96	0	13.96	440.48

Table 7 Values of alternating stress intensities

Materials	т	n	S _m [MPa]	E _D [GPa]	E_D/E_A
A240 TP304 SS	1.7	0.3	138	195	1.00
A516 Gr.70 CS	3.0	0.2	161	207	1.03

 Table 8 Material constants for fatigue life evaluation based on the DBA procedure

최종적으로 보정된 반복응력강도(S att)는 다음 식 과 같이 계산되며, Table 9에 각 시편에서 최종적으 로 보정된 반복응력강도를 나타내었다.

$$S'_{alt} = S_{alt} \times K_e \times (E_D / E_A)$$
⁽²⁾

보정된 반복응력강도와 ASME B&PV Code, Sec. III, Div. 1, Appendices에 제시되어 있는 설계피로 선도를 사용하여 시편의 손상 사이클을 계산하였 다.⁽⁵⁾ 본 논문에서는 추가적으로 NUREG/CR-6815 에 제시되어 있는 최적피로선도를 사용하여 허용 응력사이클을 계산하였으며,⁽⁴⁾ 두 피로선도를 사용 하여 계산한 피로평가 결과를 4.3항에 기술하였다.

4.2 ASME B&PV Code, Sec. VIII, Div. 2, Part 5 구조응력 기반 피로수명평가 절차⁽³⁾

구조응력(structural stress, σ_s)은 가상의 균열면 에 수직인 막응력(membrane stress, σ_m)과 굽힘응 력(bending stress, σ_b)의 합으로 정의된다. Fig. 9에 나타낸 바와 같이 균열 선단에 따른 선력(line force, f_i)과 선모멘트(line moment, m_i)를 유한요소해 석으로부터 구한 절점력(nodal force, F_i)과 절점모

 Table 9 Calculated values of fatigue life evaluations

 based on the DBA procedure

Materials	Specimen No.	S _n [MPa]	Ke	S' _{alt} [MPa]
	T4-3/6	992.85	3.33	3051.16
A240	T4-2/5	813.30	3.33	2499.37
TP304 SS	T4-1/4	694.51	3.28	2086.45
	T4-7/8	598.04	2.50	1368.38
	S7-3/6	716.62	1.97	1324.40
A516	S7-2/5	614.39	1.54	891.17
Gr.70 CS	S7-4/9	545.21	1.26	644.09
	S7-7/8	480.50	1.00	451.38

멘트(nodal moment, *M_i*)를 사용하여 식 (3)을 통해 계산하고, 식 (4)를 사용하여 막응력과 굽힘응력을 계산하였다.^(9, 10)

$$\sigma_s = \sigma_m + \sigma_b = \frac{f_i}{t} + \frac{6m_i}{t^2}$$
(4)

여기서 t는 균열 진전방향으로의 두께이며, 라운드 노치부에서 리가먼트 방향으로 가정하였다. *l*,는 Fig. 9에 나타낸 바와 같이 균열 선단을 따라 위치 한 두 절점 사이의 길이이다.

계산된 막응력 및 굽힘응력을 이용하여 탄성 구 조 막응력 범위(elastic structural membrane stress range, $\Delta \sigma_m^e$)와 탄성 구조 굽힘응력 범위(elastic structural bending stress range, $\Delta \sigma_b^e$)를 계산하며, 탄성 구조응력 범위(elastic structural stress range, $\Delta \sigma^e$) 는 다음 식과 같이 계산한다. 계산한 탄성 구조응 력 범위를 Table 10에 나타내었다.

$$\Delta \sigma^e = \Delta \sigma^e_m + \Delta \sigma^e_b \tag{5}$$

앞서 계산한 탄성 구조응력 범위를 이용하여 탄 성 구조변형률 범위를 다음 식으로 계산한다.

Fig. 9 Local line forces and moments from nodal forces and moments according to the crack front

Specimen $\Delta \sigma_{...}^{e}$ $\Delta \sigma_{h}^{e}$ $\Delta \sigma^{e}$ Materials No. [MPa] [MPa] [MPa] T4-3/6 93.1 1069.9 1163.0 A240 T4-2/5 76.3 876.4 952.7 **TP304** T4-1/4 65.1 748.4 813.5 SS T4-7/8 644.5 700.5 56.1 S7-3/6 66.3 768.7 834.9 A516 S7-2/5 56.8 659.0 715.8 Gr.70 584.8 S7-4/9 50.4 635.2 CS S7-7/8 44.4 515.4 559.8

 Table 10 Values of elastic structural stress ranges

$$\Delta \varepsilon^e = \frac{\Delta \sigma^e}{E_{ya}} \tag{6}$$

여기서 Eva는 재료의 탄성계수이며 Table 5에 제시 된 값을 사용하였다.

다음으로 식 (7)과 (8)을 연립하여 국부 비선형 구조응력 범위($\Delta \sigma$) 및 구조변형률 범위($\Delta \varepsilon$)를 계산한다.

$$\Delta \varepsilon \Delta \sigma = \Delta \varepsilon^e \Delta \sigma^e \tag{7}$$

$$\Delta \varepsilon = \frac{\Delta \sigma}{E_{ya}} + 2\left(\frac{\Delta \sigma}{2K_{css}}\right)^{1/n_{cs}}$$
(8)

여기서 K_{css}와 n_{css}는 반복 응력-변형률 선도모델에 서의 강도계수와 지수로 ASME B&PV Code, Sec. VIII, Div. 2, Part 3, Annex 3-B, Table 3-D.2에 제시 되어 있으며, 피로평가 시 사용한 값을 Table 11에 나타내었다.(3) 최종적으로 구조응력 범위는 앞서 계산한 구조변형률 범위를 사용하여 저주기 피로 인 경우 다음 식과 같이 수정하며, 계산 결과를 Table 12에 나타내었다.

$$\Delta \sigma = (\frac{E_{ya}}{1 - v^2})\Delta \varepsilon \tag{9}$$

수정한 구조응력 범위를 이용하여 등가 구조응력 범위 매개변수(equivalent structural stress range parameter, ΔS_{es})를 다음 식으로 계산한다.

$$\Delta S_{ess} = \frac{\Delta \sigma}{\frac{(2-m_{s})}{t_{ess}^{(2-m_{s})}} \cdot I^{\frac{1}{m_{s}}} \cdot f_{M}}$$
(10)

Table 11 Material parameters for the cyclic stress-strain curve

Materials	K _{css}	n _{css}
A240 TP304 SS	2275	0.334
A516 Gr.70 CS	757	0.128

Table 12 Values of structural stress ranges

Materials	Specimen No.	$\Delta arepsilon$	$\Delta\sigma$ [MPa]
A240 TP304 SS	T4-3/6	0.01021	2203.14
	T4-2/5	0.00775	1670.93
	T4-1/4	0.00624	1346.87
	T4-7/8	0.00511	1101.40
A516 Gr.70 CS	S7-3/6	0.00543	1204.72
	S7-2/5	0.00427	948.43
	S7-4/9	0.00358	794.89
	S7-7/8	0.00301	666.96

여기서 mss는 구조응력 기반 피로평가 시 고려하는 지수이며 값은 3.6으로 정의된다. 구조응력 유효 두께 tess는 다음 식에 의하여 계산하며, 모든 시편 에서의 계산 결과는 16.8 mm이다.

$$t_{ess} = 16 \text{ mm} \text{ for } t \le 16 \text{ mm}$$
 (11)
= t for 16 mm= 150 mm for $t \ge 150 \text{ mm}$

여기서 t는 라운드 노치부에서 리가먼트 방향으로 가정한 균열 진전방향으로의 두께이다. / "... 는 구 조응력 기반 피로평가 시 사용되는 보정계수이며 다음 식을 따라 계산한다. 모든 시편에서의 계산 결과는 1.31이다.

$$I^{\frac{1}{m_{a}}} = \frac{1.23 - 0.364R_{b} - 0.17R_{b}^{2}}{1.007 - 0.306R_{b} - 0.178R_{b}^{2}}$$
(12)

$$R_{b} = \frac{\left|\Delta\sigma_{b}^{e}\right|}{\left|\Delta\sigma_{m}^{e}\right| + \left|\Delta\sigma_{b}^{e}\right|}$$
(13)

평균 구조응력 보정계수 fw은 다음 식을 사용 하여 계산하며, 모든 시편에서의 계산 결과는 1 이다.

$$f_{M} = (1 - R)^{\frac{1}{m_{\alpha}}}$$
(14)

for $\sigma_{mean} \ge 0.5S_y$, and R > 0, and $\left| \Delta \sigma_m^e + \Delta \sigma_b^e \right| \le 2S_y$ = 1.0 for $\sigma_{mean} < 0.5S_y$, or $R \le 0$, or $\left| \Delta \sigma_m^e + \Delta \sigma_b^e \right| > 2S_y$

여기서 σ_{mean} 은 최대, 최소 탄성 구조응력으로부터 계산한 평균 구조응력이며, *Sy*는 항복강도이다. Table 13에는 등가 구조응력 범위 매개변수 계산 결과를 나타내었다.

최종적으로 ASME B&PV Code, Sec. VIII, Div. 2, Part 3, Annex 3-F.2의 용접부 설계피로선도와 등가 구조응력 범위 매개변수를 사용하여 허용응력사이 클(N)을 계산하였다.⁽³⁾

$$N_f = \frac{f_I}{f_E} \left(\frac{f_{MT}C}{\Delta S_{ess,k}}\right)^{1/h}$$
(15)

$$f_{MT} = \frac{E_T}{E_{ACS}} \tag{16}$$

여기서 fi는 피로향상계수이며, 피로손상 향상 방법 이 적용되면 1 보다 큰 값을 가지나 본 연구에서 사용한 시편은 피로손상 향상 방법이 적용되지 않 았으므로 fi를 1로 고려하였다. furt는 재료 및 온도 보정계수이며, Er 및 Eacs는 각각 해당 천이상태 평 균온도에서의 탄성계수, 21 °C에서 탄소강의 탄성 계수이다. fi는 환경조정계수이며, 대기 환경의 경우

 Table 13 Values of equivalent structural stress range parameters

1			
Materials	Specimen No.	ΔS_{ess} [MPa/(mm) ^{(2-m_{ss})/2m_{ss}]}	
A240 TP304 SS	T4-3/6	3155.7	
	T4-2/5	2393.4	
	T4-1/4	1929.2	
	T4-7/8	1577.6	
A516 Gr.70 CS	S7-3/6	1725.4	
	S7-2/5	1358.3	
	S7-4/9	1138.4	
	S7-7/8	955.2	

1로 고려한다. C와 h는 재료상수이며, ASME B&PV Code, Sec. VIII, Div. 2, Part 3, Annex 3-F.4 Table 3-F.2M에 페라이트강(ferritic steel)과 스테인리스강 에 대해 제시되어 있는 값을 사용하였다. Table 14에 손상 사이클 계산 시 사용한 계수 및 상수 값을 나타 내었으며, 피로평가 결과를 4.3항에 기술하였다.

4.3 피로수명 예측 및 평가결과 비교

Table 15에는 앞서 기술한 두 가지 피로수명평가 절차에 의한 모든 시편의 피로수명 예측결과를 사 용한 피로선도에 따라 나타내었다. Table 15의 피 로수명평가 결과를 Table 4의 균열개시 시점(*N*_i)과 비교 시 모든 시편에서 피로수명을 보수적으로 예측함을 확인하였다. 설계피로선도 기반 DBA 평가 절차를 이용한 경우 피로수명을 가장 보수 적으로 예측하였으며, T4-1/4 시편의 시험조건을 제외하고는 최적피로선도 기반 DBA 평가 절차 사용 시 피로수명을 가장 비보수적으로 예측하였 다. T4-1/4 시편의 경우 구조응력 기반 평가 절차를 사용하였을 때 피로수명을 가장 비보수적으로 예 측하였다.

Table 16은 피로수명 예측결과와 평균 균열개시 시점(N_{i.avg})과의 차이를 나타낸 것으로 시험결과와 예측결과의 비로 나타내었다. A240 TP304 SS 시편 은 시험결과와 예측결과의 비가 최적피로선도를 사용할 경우에는 약 8배~17배 정도 차이가 났으며 설계피로선도를 사용하면 그 비가 약 105배~190배 정도였다. A516 Gr.70 CS 시편은 최적피로선도를 사용할 경우 1.2배~2.8배 정도였으며, 설계피로선 도를 사용할 경우에는 약 24배~61배 정도였다.

그리고 전체적으로 하중진폭의 크기가 증가할수 록 시험결과와 예측결과의 비가 증가하는 것으로 확인되었다. 즉, 하중진폭이 클수록 피로평가의 보 수성이 증가하였다.

 Table 14 Factors and constants to calculate allowable stress cycles

Materials	f_I	f_{MT}	f_E	С	h
A240 TP304 SS	1	0.964	1	19930.2	0.3195
A516 Gr.70 CS	1	0.999	1	19930.2	0.3195

		Sec. III,	Sec. VIII, Div. 2	
Mat.	Specimen No.	Best-fit fatigue curve [cycles]	Design fatigue curve [cycles]	Welded joint design fatigue curve [cycles]
A240 TP304 SS	T4-3/6	448	41	273
	T4-2/5	701	61	650
	T4-1/4	1045	88	1275
	T4-7/8	2912	223	2394
A516 Gr.70 CS	S7-3/6	2570	117	2108
	S7-2/5	6442	305	4458
	S7-4/9	14332	692	7749
	S7-7/8	39061	1879	13425

Table 15 Predicted fatigue lives based on ASME B&PV Codes

Table 16 Ratios of average experimental crack initiation cycles to predicted fatigue lives

Mat.	Specimen No.	N _{i.avg} [cycles]	Sec. III, NB-3200		Sec. VIII, Div. 2
			Best-fit fatigue curve	Design fatigue curve	Welded joint design fatigue curve
A240 TP304 SS	T4-3/6	7598	17.0	185.3	27.8
	T4-2/5	10820	15.4	177.4	16.6
	T4-1/4	16787	16.1	190.8	13.2
	T4-7/8	23501	8.1	105.4	9.8
A516 Gr.70 CS	S7-3/6	7127	2.8	60.9	3.4
	S7-2/5	11370	1.8	37.3	2.6
	S7-4/9	24089	1.7	34.8	3.1
	S7-7/8	45543	1.2	24.2	3.4

5. 결 론

본 논문에서는 다양한 피로수명평가 절차의 보 수성 평가를 위해 A240 TP304 SS 및 A516 Gr.70 CS 원형 노치 CT 시편에 대한 피로수명평가를 수 행하였다. 또한, 다양한 하중조건에서 수행한 피로 손상 시험결과와 피로수명 예측결과를 비교하였 다. 피로수명평가를 위해 탄성 유한요소해석을 수 행하였으며, ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200, DBA 피로수명평가 절차와 ASME B&PV Code, Sec. VIII, Div. 2, Part 5의 구조응력 기 반 피로수명평가 절차를 사용하였다. 그 결과, 두 평가 절차에 의한 피로수명 예측 시 피로손상 시험 결과보다 피로수명을 모든 시편에서 보수적으로 예측하였다. 한편, 모든 시편에서 설계피로선도 기 반 DBA 평가 절차 사용 시 피로수명을 가장 보수 적으로 예측하였으며 최적피로선도 기반 DBA 평 가 절차 사용 시 피로수명을 가장 비보수적으로 예 측하는 것으로 나타났다. 또한, 하중진폭의 크기가 증가할수록 각 피로수명평가 절차의 보수성도 증 가함을 확인하였다.

후 기

본 연구는 한국전력기술(주)의 연구비 지원으로 수행되었습니다.

참고문헌

- Bannantine, J. A., Corner, J. J. and Handrock, J. L., 1990, *Fundamentals of Metal Fatigue Analysis*, Prentice-Hall, Englewood Cliffs, New Jersey.
- (2) ASME B&PV Code, Sec. III, Division 1 Subsection NB, 2011, "Rules for Construction of Nuclear Facility Components," American Society of Mechanical Engineers, New York.

- (3) ASME B&PV Code, Sec. VIII, Division 2, 2017, "Rules for Construction of Pressure Vessels," American Society of Mechanical Engineers, New York.
- (4) Chopra, O. K. and Shack W. J., 2003, "Review of the Margins for ASME Code Fatigue Design Curve – Effects of Surface Roughness and Material Variability," U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6815.
- (5) ASME B&PV Code, Sec. III, Division 1 Appendices, 2017, "Rules for Construction of Nuclear Facility Components," American Society of Mechanical Engineers, New York.
- (6) ASTM E1820-15, 2015, "Standard Test Method for Measurement of Fracture Toughness," ASTM International, West Conshohocken, PA.
- Paul, S. K., Sivaprasad, S., Dhar, S. and Tarafder, S., 2011, "Key Issues in Cyclic Plastic Deformation:

Experimentation," *Mech. of Mater.*, Vol. 41, pp. 705~720. doi:https://doi.org/10.1016/j.mechmat.2011. 07.011

- (8) ASME B&PV Code, Sec. II, Part D, 2017, "Materials," American Society of Mechanical Engineers, New York.
- (9) Hong, J. K., 2012, "Development and Application of the Battelle Structural Stress Method for Fatigue Evaluation of Welded Automotive Structures," J. Weld. Join., Vol. 30, No. 2, pp. 22~30. doi:https://doi.org/10.5781/KWJS.2012.30.2.126
- (10) Kim, S. M., Kim, Y. N., Lee, S. H. and Kim, M. H., 2012, "Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach," *J. Weld. Join.*, Vol. 30, No. 6, pp. 86–91. doi:https://doi.org/10.5781/ KWJS.2012.30.6.572