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Abstract 
 

We propose a FPGA based design that performs real-time power-efficient analysis of 
heterogeneous sensor data using adaptive ANN on edge gateway of smart military wearables. 
In this work, four independent ANN classifiers are developed with optimum topologies.  Out 
of which human activity, BP and toxic gas classifier are multiclass and ECG classifier is 
binary. These classifiers are later integrated into a single adaptive ANN hardware with a select 
line(s) that switches the hardware architecture as per the sensor type. Five versions of adaptive 
ANN with different precisions have been synthesized into IP cores. These IP cores are 
implemented and tested on Xilinx Artix-7 FPGA using Microblaze test system and LabVIEW 
based sensor simulators. The hardware analysis shows that the adaptive ANN even with 8-bit 
precision is the most efficient IP core in terms of hardware resource utilization and power 
consumption without compromising much on classification accuracy. This IP core requires 
only 31 microseconds for classification by consuming only 12 milliwatts of power. The 
proposed adaptive ANN design saves 61% to 97% of different FPGA resources and 44% of 
power as compared with the independent implementations. In addition, 96.87% to 98.75% of 
data throughput reduction is achieved by this edge gateway. 
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1. Introduction 

The wireless sensor networks have emerged as a prominent technology for many 
applications in the last two decades [1]. During these years, many important wireless sensor 
network concepts and algorithms are implemented and tested in the various application 
domains [2] [3]. The next generation enhancement in these networks has started in the 
direction of the internet of things (IoT). The transformation of traditional sensor networks into 
the smart environments is conceivable due to the rising IoT framework. The total 
internet-connected devices are rapidly increasing in recent years. According to the predictions, 
around 50 billion IoT devices will be connected to the internet across the globe by 2020 [4]. 
The increasing connections impose several limitations on the network performance like a 
real-time response, network security, reliability, energy-efficiency, interoperability, etc [5]. 
The decentralization of computing, networking and storage resources appear as an effective 
solution for these limitations [6]. The new emerging paradigm based on this approach is 
popularly known as fog computing or edge computing in the IoT domain. The fog computing 
technology is designed to achieve low network latency, high network security and efficient 
bandwidth utilization in IoT applications [7]. 

The fog computing operates in the fog layer present between the cloud layer and the device 
layer in the IoT infrastructure [6]. In the fog layer, the edge devices play a key role to ensure 
the real-time services and secure networking. The edge devices are equipped with sufficient 
computational power, which results in a considerable reduction in response latency and 
network traffic [8]. The gateway device is widely considered as the important edge platform 
for the implementation and execution of the fog layer that handles an essential local processing 
and services [9]. Traditionally, the gateway works as a protocol converter, routing-forwarding 
device and communication bridge point between network and the sensor [10]. The gateways 
are preferred because of the sufficient availability of computing resources, communication 
bandwidth, power consumption and it holds a strategic location in the network [5]. 

The implementation of the fog computing approach on the defense IoT application is 
presented in this work. The defense wearable gateway has been selected as an edge platform in 
this scenario. Traditionally, the wireless sensor networks in the military domain have to meet 
stringent system requirements like low latency and low power data processing, network 
security, real-time and reliable intelligence, low bandwidth availability, mobility, etc. 
However, these requirements become more challenging in case of difficult combat scenarios 
[11] [12]. These challenges can be potentially fulfilled by the adoption of fog computing 
approach in defense IoT domain. 

In the proposed work, a real-time and intelligent data analyzer has been implemented for 
smart wearable edge gateway. Intellectual Property (IP) core of the adaptive artificial neural 
network (ANN) is developed for detection of soldier’s physical activity, physiological status 
and chemical warfare threat. The adaptive ANN IP core has been tested on the heterogeneous 
hardware and then it is integrated seamlessly into the FPGA/SoC based edge gateway. The IP 
core is capable to classify four types of heterogeneous sensor features collected on the edge 
gateway in real-time. In this work, the selected heterogeneous sensor nodes are an 
accelerometer for current soldier activity detection, ECG for the abnormal cardiac activity 
detection, PPG for abnormal blood pressure detection and a gas sensor for toxic gas detection. 
The extensive analysis of each development stages, comparison with conventional designs and 
performance evaluation of edge gateway has been presented in this paper. 
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The selection of appropriate hardware platform plays a crucial role in the efficient working 
of edge gateway. The hardware architecture must be capable of parallel processing and 
dynamic reconfiguration with the low power requirements to ensure real-time performance 
[13].  The recent FPGA/SoCs provides high-performance to power ratio among all available 
parallel processing devices [14]. The new generation FPGA/SoCs are becoming a popular 
choice for the implementation of edge gateways [15] [16].  We used Xilinx Artix-7 FPGA for 
the IP designing and testing because all cost-optimized Xilinx SoC devices use Artix-7 FPGA 
fabric as Programmable Logic (PL). This also enables our adaptive ANN IP core to  be 
seamlessly integrated into any cost-optimized Xilinx SoC Platforms [17]. 

The remainder of the research paper is organized as follows. In Section 2, we review the 
design and implementation of edge gateways for the various functionalities in the past few 
years, also we discuss the motivation behind this work. In Section 3, we focus on the modeling 
of adaptive artificial neural network IP Core for the edge gateway. The Section 3 is divided 
into two subsections, the first subsection shows the mathematical model of basic ANN design 
and second subsection is dedicated to mathematical modeling of adaptive ANN design. In 
Section 4, we describe the complete implementation and testing setup for the adaptive ANN IP 
core. Section 5 discusses the implementation and performance analysis of an ANN IP core. 
Finally, Section 6 concludes this work with important research findings and suggests some 
future direction. 

2. Related Work 
Among all edge platforms, the gateways are considered as the most important edge devices 

in fog computing paradigm. Hence, this attracted many researchers to investigate efficient 
edge gateway architecture in the last three to four years. The role of edge gateways in various 
IoT applications includes data dissemination, real-time services, decentralized computation, 
transient storage, security and privacy [6]. Some of the previously reported edge gateway 
architectures and implementations have been discussed below, which were developed for 
various fog assisted IoT applications. 

In order to enhance the performance of an IoT health monitoring system, Amir M. Rahmani 
et al. [5] proposed a smart e-Health gateway (UT-GATE). This work demonstrated local data 
processing based on fog computing approach for monitoring patient with acute illness. In the 
Industrial IoT (IIoT) domain, Ching-Han Chen et al. [18] designed a real-time and low power 
edge gateway for the data collection, communication and field-bus management. The 
modeling of edge gateway is done on FPGA by implementing the concept of multiple 
collaborative microcontrollers. The gateway also has to handle the internet communication 
and sensor data exchange, so the optimum resource management is a prime concern in its 
design; Roberto Morabito et al. addressed this in their work [10]. Their lightweight edge 
gateway (LEGIoT) achieved first service allocation, interoperability, high-energy efficiency 
and flexibility in the management of applications. The LEGIoT was implemented on the RPi2, 
RPi3, OC1+, OC2 hardware platforms and the performance were evaluated using 25 and 100 
nodes. 

Surabhi Abhimithra Karthikeya et al. [19] proposed the low-cost and power efficient 
solutions specific gateways (SSGWs). The SSGWs are specially designed for the remote area 
deployments, where devices are battery powered. Manuel Suárez-Albela et al. [9] discussed 
the energy efficient gateway. Nandor Verba et al. [20] proposed Raspberry Pi based open 
Service Gateway Interface (OSGI), which performs peripheral communication abstraction and 
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clustering of gateways. One of the interesting work by Blesson Varghese et al. [21] shows 
hidden potentials of fog computing. In the online game use case, the preliminary results of this 
work achieved 20% improvement in average response time and 90% reduction in cloud data 
traffic. 

The various requirements of fog computing gateways have been achieved substantially in 
the above research works. We realized the need for low power and low latency local data 
analysis for the time-sensitive IoT applications like industry, transport and defense. The 
real-time data analysis is an important component of an edge gateway to detect emergency 
conditions, which also improves the system sensitivity, consistency, reliability and capability 
[5]. In addition, it increases the edge gateway performance and reduces the data throughput in 
time-sensitive applications [22]. In the defense IoT scenario, these parameters play the 
deciding role in the network-centric warfare circumstances. Therefore, this motivates us to 
implement real-time data analysis on the edge gateway in the defense IoT wearable [12]. 

To demonstrate real-time data analysis, we used four types of heterogeneous sensors data 
that transmits respective data features to the edge gateway.  The important analysis is obtained 
from these features using the classification algorithm running on the edge gateway. The 
artificial neural network (ANN) is popularly used as a classification algorithm for all targeted 
sensor data analysis [23] [24] [25]. Therefore, the presented work has adopted the ANN as a 
classification algorithm. Thanks to ANN for its flexible architecture, we have successfully 
implemented a single ANN design, which is capable to classify all four types of sensor data 
using ANN adaptation concept. The adaptive ANN design gets configure into the respective 
type of classifier in real time. 

3. Heterogeneous Sensors Data Classification 

The basic details of ANN classifier is described in the first subsection and the second 
subsection is dedicated to the proposed adaptive ANN architecture. The adaptive ANN 
classifier is capable of analyzing diverse sensor data using limited configuration efforts. 

 

3.1 Artificial Neural Network (ANN) Classifier 

 
Fig. 1. Artificial Neural Network (ANN) with a single hidden layer. 

 
The fully connected feed-forward multilayer perceptron with a hidden layer is used as an ANN 
design in this work. As shown in Fig. 1, an ANN design is divided into three layers. The output 
of each layer is  calculated by the following equations.  
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• Input Layer: 
The input features are converted into a numeric range from 1 to -1 by the input layer, 
which is evaluated by Equation (1).  

𝒀𝒀 = {𝑮𝑮   ⃘ (𝑿𝑿− 𝑿𝑿𝒎𝒎𝒎𝒎𝒎𝒎)} + 𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎                                                                   (1)  
Where, 𝒀𝒀 is the output matrix of the input layer, 𝑿𝑿 is the input feature matrix; 𝑿𝑿𝒎𝒎𝒎𝒎𝒎𝒎 
is the matrix of all minimum values of respective features and it is subtracted from the 
𝑿𝑿 matrix. The resultant matrix is Hadamard Product (  ⃘) with the gain matrix 𝑮𝑮. 𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎 
is the matrix of minimum values of output, as mentioned above output range is 1 to -1 
so each element of 𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎 is -1. The dimension of all these matrixes are i×1, where “i” 
is the total number of input features. The matrix 𝑮𝑮 is calculated from the Equation (2). 

𝑮𝑮 = � 2
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1 −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

1   2
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2 −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2   … … …   2
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖 −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖  �                                         (2) 

Where, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1  ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

1  ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
2  ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 … . . 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖  ,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖  are the maximum and minimum 
values of respective features. All of these constant matrices are evaluated during the 
training phase of the ANN classifiers.  
 

• Hidden Layer: 
Total "𝑗𝑗" neurons are present in the hidden layer; the output matrix of the hidden layer 
is calculated by the Equation (3). 

𝑯𝑯 = 𝒇𝒇𝟏𝟏�𝑾𝑾𝒉𝒉 × 𝒀𝒀� + 𝑩𝑩𝒉𝒉                                                                                              (3)  
Where, 𝑾𝑾𝒉𝒉 is the hidden layer weight matrix of dimension  𝑗𝑗 × 𝑖𝑖, 𝒀𝒀 is the output 
matrix of an input layer with the dimension of  𝑖𝑖 × 1, 𝑩𝑩𝒉𝒉 is the bias matrix of a hidden 
layer with dimension  𝑗𝑗 × 1, and 𝒇𝒇𝟏𝟏 works as activation function (nonlinear sigmoid). 
The hardware modeling of a perfect nonlinear function required enormous FPGA 
hardware resources. We implemented an efficient sigmoidal approximation known as 
a PLAN function to minimize the hardware resource utilization [26]. The Equation (4) 
shows the sigmoid function approximation (i.e. PLAN function). 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝛽𝛽) = 0.25 × |𝛽𝛽| + 0.5 𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ |𝛽𝛽 < 1,  
 = 0.0125 × |𝛽𝛽| + 0.625            𝑓𝑓𝑓𝑓𝑓𝑓 1 ≤ |𝛽𝛽| < 2.375,  
 =  0.03125 × |𝛽𝛽| + 0.84375 𝑓𝑓𝑓𝑓𝑓𝑓 2.375 ≤ |𝛽𝛽|  
 =  1                                                 𝑓𝑓𝑓𝑓𝑓𝑓 5 ≤ | 𝛽𝛽 | (4) 

 
• Output Layer: 

The basic ANN model classifies input features into the kth classes; therefore, the "𝑘𝑘" 
total output neurons are present in the output layer. The final output matrix  𝑶𝑶𝑷𝑷 is 
calculated from the Equation (5). 

𝑶𝑶𝑷𝑷 = 𝒇𝒇𝟐𝟐{𝑾𝑾𝒐𝒐𝒐𝒐 × 𝑯𝑯} + 𝑩𝑩𝒐𝒐𝒐𝒐                                                                                       (5)  
Where, 𝑾𝑾𝒐𝒐𝒐𝒐 is weight matrix of output layer with dimension 𝑘𝑘 × 𝑗𝑗, 𝑯𝑯 is the output 
matrix of a hidden layer with the dimension of 𝑗𝑗 × 1; 𝑩𝑩𝒐𝒐𝒐𝒐 is the bias matrix of out 
layer with dimension of 𝑘𝑘 × 1. The function 𝒇𝒇𝟐𝟐 is an activation function with the pure 
linear output response.  

Generally, the ANN model is terminated with SOFTMAX function, this function is used 
for the calculation of error during ANN training [27]. However, it works as a regular MAX 
function in ANN testing. As this work is focused on the testing phase of ANN, we used MAX 
function to avoid the excess hardware resource utilization. After the evaluation of output 
matrix 𝑶𝑶𝑷𝑷, the MAX block finds out an index of the maximum value in the output matrix. The 
calculated index is the output class of the ANN model.  



4870                                                              Gaikwad et al.: Heterogeneous Sensor Data Analysis Using Efficient Adaptive 
Artificial Neural Network on FPGA Based Edge Gateway 

As shown in Fig. 1, input parameters, weights and biases are calculated during the training 
of the ANN model. If the model is trained with a specific type of sensor features then it can 
only classify this respective sensor features. The classification of multiple heterogeneous 
sensor inputs is possible by developing separate and independent classifiers for all types of 
sensors. However, the hardware deployment of separate classifiers requires more hardware 
resources in a gateway and it increases linearly with number of heterogeneous sensors nodes. 
Indirectly, the excess hardware resource utilization also contributes to power consumption and 
cost of the gateway. Therefore, we designed an adaptive ANN model to minimize hardware 
resource utilization, power consumption and system cost of the gateway. The proposed 
adaptive ANN model is capable to classify all type of sensor features collected by the edge 
gateway. The adaptive ANN design gets configure according to the sensor type and classifies 
the respective features in real-time.  

3.2 Adaptive ANN Classifier Architecture 
Consider the scenario where the edge gateway is serving a time-sensitive application, which 
collects sets of features from “n” types of heterogeneous sensor nodes. The fog computing 
approach has been adopted for real-time data analysis to achieve quick gateway response. The 
important analysis is evaluated from the locally collected sensor features on the edge gateway 
itself. The implementation of separate pre-trained ANN classifiers for respective sensor 
analytics on a SoC/FPGA is one of the simplest possible approaches. However, it holds many 
drawbacks as explained above. Therefore, we proposed a novel adaptive ANN classifier 
implementation for the real-time data analysis in edge gateway.  
 

 
Fig. 2. The mathematical model of adaptive Artificial Neural Network (ANN) for heterogeneous sensor 

data classification. 
 

As shown in Fig. 1, the observation of basic ANN architecture indicates that weight 
matrices, bias matrices and input layer constants define ANN classifiers functionality. 
Therefore, we designed the ANN model, which switches the respective ANN parameters 
according to the sensor type [28]. As shown in Fig. 2, the ANN parameters i.e. weights, biases 
etc. are supplied through the multiplexer to the ANN computational blocks.  The selection of 
parameter matrix is done on basis of "𝑠𝑠" select line input, which describes the sensor features 
type.  The input features from sensors are heterogeneous and independent, therefore all 
pre-trained ANN classifiers are completely different from each other. The weight, bias and 
input layer constants matrices of all classifiers are calculated separately using the 
backpropagation algorithm during the training. The maximum dimensions among all the ANN 
classifiers have been selected as the dimension of the adaptive ANN so that it can 
accommodate all classifiers. The final topological dimension of an adaptive ANN are as 
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following, the input feature vector length (𝐼𝐼), the number of hidden layer neurons (𝐽𝐽) and the 
number of output layer neurons ( 𝐾𝐾). The dimension of 𝐼𝐼, 𝐽𝐽 and 𝐾𝐾 are calculated from the 
following Equation (6). They are nothing but the maximum number of input, hidden and 
output neurons among all “𝑛𝑛” topologies. 
𝐼𝐼 = max�𝑖𝑖1,𝑖𝑖2,𝑖𝑖3, ….  𝑖𝑖𝑛𝑛�,  𝐽𝐽 = max�𝑗𝑗1,𝑗𝑗2,𝑗𝑗3, ….  𝑗𝑗𝑛𝑛� &  𝐼𝐼 = max�𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, ….  𝑘𝑘𝑛𝑛�          (6) 

Where, 𝑖𝑖1,𝑖𝑖2,𝑖𝑖3, ….  𝑖𝑖𝑛𝑛are selected input feature vector lengths of all classifiers, 𝑗𝑗1,𝑗𝑗2,𝑗𝑗3, ….  𝑗𝑗𝑛𝑛 
are all numbers of hidden layer neurons of  "𝑛𝑛" ANN classifiers, which is independently 
trained from "𝑛𝑛"  types of heterogeneous sensors features. Similarly, 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, ….  𝑘𝑘𝑛𝑛  are 
numbers of output layer neurons of all "𝑛𝑛" ANN classifiers.  

The independent training of all ANN models for the respective sensors generates distinct 
ANN topologies. Because of its diverse dimensions of all models, the number of input, hidden 
and output neurons are different from each other. However, the designed adaptive ANN model 
has a fixed dimension so that it can accommodate all models in a single design. In the adaptive 
ANN design, all parameter matrix of each classifier is upended with zeros so that it achieves 
the dimension of adaptive ANN (𝐼𝐼, 𝐽𝐽 and 𝐾𝐾). After parameter matrix resizing of all classes, 
these are integrated into adaptive ANN seamlessly. The modeling methodology of the 
adaptive ANN implementation is discussed below.  

 

 
Fig. 3. The change in adaptive ANN architecture with respective select line status (𝑠𝑠). 

 
We selected four type of heterogeneous sensor nodes to evaluate the adaptive ANN 

performance in wearable edge gateway. The four independent ANN classifiers are trained 
from their respective data sets. Optimum ANN topologies with parameters (weights and biases) 
are obtained for all independent ANN models. Finally, all ANN models have been integrated 
into a single adaptive ANN model, which performs sequential classification according to the 
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select line(𝑠𝑠) status. We selected four types of sensors, so "𝑛𝑛" becomes 4 and select line(𝑠𝑠) can 
be set to 0, 1, 2 or 3 which defines the type of classifications. Fig. 3 shows the adaptive ANN 
architecture for all type of select line(𝑠𝑠) inputs. At "𝑠𝑠 = 0”, adaptive ANN classifier works as 
a human activity recognizer (7-6-5) with full connections. At  "𝑠𝑠 = 1 ”, adaptive ANN 
classifier is configured into ECG classifier (5-4-2) that uses five neurons input layer, four 
neurons in the hidden layer and two neurons at output layer. The neuron parameters (weight 
and biases and input layer constants) are switched according to the select line status so that it 
can perform ECG classification accurately. The remaining neurons are deactivated and the 
MAX function only accepts two neurons outputs during ECG classification. The similar 
approach works in case of blood pressure classification (𝑠𝑠 = 2 ) and toxic gas 
classification(𝑠𝑠 = 3). As shown in Fig. 3, an adaptive ANN model is adapted according to the 
select line status. The same input and output connections of the model are used in all types of 
classifications. The following section describes each phase involved in the hardware 
implementation of adaptive ANN design. 

4. Adaptive ANN Implementation and Testing 
The four heterogeneous sensor (𝑛𝑛 = 4) inputs are classified by the adaptive ANN on edge 
gateway of defense wearables. All four-sensor nodes have been installed on the soldier 
wearables that generate raw heterogeneous sensors data. The respective sensor nodes perform 
preprocessing and feature extraction on raw data. The important and relevant classifications 
are done on the edge gateway by using hardware-based adaptive ANN in real time. The 
present work is focused on the development of adaptive ANN Intellectual Property (IP) core, 
which is integrated into the SoC/FPGA based wearable edge gateway.  

4.1 Heterogeneous Sensor Data Collection 
Table 1. Details of all four types of heterogeneous sensor datasets used in this work. 

 Human Activity 
Recognition 

ECG 
Classification 

BP Classification Toxic Gas 
Classification 

Sensors 
3-axial 

Accelerometer 
Modified Limb 
Lead II (MLII) 

PPG and ECG 
Sensors 

Metal 
Oxide(MOX) 
Gas Sensors 

Dataset 
UCI Human 

Activities Data 
Set [29] 

MIT-BIH  
Arrhythmia [30] 

Cuff-Less Blood 
Pressure Estimation 

[30] [32] 

UCI Gas Sensor 
Array Dataset 

[31] 

Records Used 

1,3,5,6,7,8,11,14,
15,16,17,19,21,2
3,25,26,27,28,29,

30 

100,101,103,106,
112,113,109,114,
118,124,223,232,

234 

29,30,35,71,77,79,2
97,390,383,436,439,
441,443,445,114,18
1,182,211,259,352,3
80,389,477,486,495 

Channel 
CH2,CH3, 

CH5,CH7 of all 
10 Batch’s 

Subjects 20 13 25 10 Batches 
Sampling Rate 50 Hz 360 Hz 125 Hz 100 Hz 

Window Size 0.56 sec  One ECG 
Interval 

One ECG Interval 10 Milliseconds 

Total Feature 
Vectors 

7767 898 2629 20385 

Training and 
Validation 

7467 589 2329 20085 

Testing 300 300 300 300 
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 Four relevant machine-learning data sets of respective sensors have been used in this work for 
the development and testing of adaptive ANN model. Table 1 shows detailed information 
about each dataset used for the respective sensor data analysis. The raw data streams are 
divided into small segments, the size of the segment is decided from the nature of sensor [29] 
[30] [31] [32]. Four sets of feature vectors are computed from these raw data segments. The 
details about the input features and output classes of each classifier are discussed in the next 
subsection. All four-feature vector sets are divided into the two parts, 300 feature vectors for 
the testing and remaining feature vectors for the training and validation of respective ANN 
design. 
 

4.2 Feature Extraction and Training 
The feature vectors are extracted from raw data segments of respective sensor nodes. We 
selected important and relevant features for the classifications, which used in many previous 
works. In human activity recognition, standard deviation along three axes [33], mean of 
gravity acceleration [34] [35] along three axes and Signal Magnitude Area (SMA) [36] [37] 
are extensively used features. Therefore, this work also used similar features for classification 
of five basic activates as shown in Table 2. In toxic gas classification, many works used 
normalized samples of gas sensors as feature inputs [25] [38]. Hence, the toxic gases like 
Acetaldehyde, Acetone, and Toluene has been classified from normalized sensor samples.    
 

Table 2. Details of extracted feature vectors and selected output classes of all four classifiers. 
Classifica
tion Type 

Human Activity 
Recognition 

Abnormal ECG 
Classification 

 BP 
Classification 

Toxic Gas 
Classification 

In
pu

t  
Fe

at
ur

es
 

F1 X axis Body Acc. Standard 
Deviation 

R-R Interval R-R Interval Normalized 
Output of 
TGS2600 

F2 Y axis Body Acc. Standard 
Deviation 

QRS Complex 
Length 

S1 Normalized 
Output of 
TGS2602 
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Fig. 4. PPG and ECG morphological features selected for the respective classifications. 

 
 

As shown in Fig. 4, we have selected the morphological features of ECG and PPG signals 
for the physiological monitoring [24] [39]. We used five types of morphological features 
extracted from the ECG signal as shown in Table 2. ECG features are classified into 
two-output classes normal and abnormal. Similarly, Cuff-less Blood Pressure (BP) broadly 
has been classified into three classes normal, low and high, which is evaluated from six 
features. Five features are extracted from the PPG signal and one feature (R-to-R interval) is 
calculated from the ECG signal [31] [40]. The detailed deceptions of features and output 
classes of both physiological parameters are shown in Fig. 4 and Table 2. 

As shown in Table 1, the total feature vectors of each data set is divided into two parts, 
from which training and validation dataset is used for the supervised learning of four 
independent ANN classifiers. The training and validation is conducted independently using 
MATLAB. All ANN classifiers use fully connected multilayer perceptron (MLP) with a single 
hidden layer. The training of each classifier is done using the backpropagation algorithm, 
which uses the gradient descent approach [2]. The numbers of input neurons of each ANN 
models are decided from the input features of respective classifiers. Similarly, the numbers of 
output neurons are decided from the output classes of each model. For each ANN classifier, 
the optimum numbers of hidden layer neurons are estimated from the simulations results 
shown in Fig. 6. All ANN classifiers are trained and tested for all combinations of hidden layer 
neurons. The topology with maximum accuracy is selected for implementation in each ANN 
classifier. The weight matrices, bias matrices and input layer constants of all four ANN 
classifiers are calculated from training and validation, which are used finally in an adaptive 
ANN designing. The adaptive ANN classifier is implemented on hardware for the testing 
phase so that it avoids unnecessary hardware burden for training and validation in the present 
application. 
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4.3 Hardware Implementation 

 
Fig. 5. Testbed setup for adaptive ANN IP core testing using LabView based GUI’s. 

 
Generally, the classification algorithms are computationally heavy and efficient 
implementation of these algorithms on hardware is still a challenging problem. The new 
generation system on chip solutions is the best choice for the fulfillment of tough system 
requirements. The five versions of adaptive ANN Intellectual Property (IP) with different data 
perception (32, 24, 16, 12 and 8 bits) has been implemented and tested on the hardware. The 
adaptive ANN classifiers are implemented on Xilinx Artix-7 series FPGA’s, which works as 
programmable logic (PL) in the all cost-optimized Xilinx SoC devices. These IP cores of 
adaptive ANN design gets easily integrate with any Xilinx FPGA or SoC with sufficient 
hardware resources. The IP cores are designed using Xilinx system generator platform 
(high-level hardware description tool) that minimized the design time [28].  

Each version of IP core is integrated with separate Microblaze processor-based hardware 
test designs using Vivado IP integrator. Microblaze is programmed with test application using 
Xilinx software development kit (SDK). All five versions of IP core are tested using testbed 
setup shown in below. The hardware architectures of all versions are similar except data 
precision that has a significant influence on hardware performance. The effect of data 
precision on hardware performances of all five IP cores has been analyzed in subsection 5.2. 

All IP cores are operated at 10 MHz operating frequency to optimize power consumption 
and classification latency. Sigmoid function approximation is designed in the hardware as 
shown in Equation (4) [26]. The computation of each neuron output in a layer of adaptive 
ANN executes parallel on the FPGA fabric. For these implementations, we selected Xilinx 
XC7A35TICSG324-1L FPGA that provides around 30% reduction in power consumption by 
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switching fabric voltage level from 1 volt to 0.95 volts [41]. Each IP core test design are 
equipped with five UART connections, four of them are used to collect heterogeneous sensor 
features and remaining is used to send the analyzed data. 

4.4 Testbed Setup 
As shown in Fig. 5, the practical edge gateway scenario has been created using LABVIEW 
based sensors and receiver simulators. In the present application, all four heterogeneous sensor 
nodes communicate with the gateway by using the UART link, which is frequently used in 
short-range communication applications. In the present application, feature extraction is done 
on the wearable sensor nodes. Therefore, the similar approach has been used in adaptive ANN 
IP core testing. The similar ANN test samples (300 per sensor nodes) of four types of 
heterogeneous sensor nodes are sent to the gateway. Each type of features set is transferred to 
the adaptive ANN IP core through UART link and Microblaze with appropriate select line (s) 
input.  IP core classifies input features according to select line status and forwards the output 
class to the receiver simulator. The classification accuracy of all five versions of adaptive 
ANN IP core implementations are tested in the same way.  

5. Results and Analysis 
This section covers the complete analysis of adaptive ANN classifier performance in all 
design phases. The results are divided into three parts from which first two parts are dedicated 
to simulations and implementation results of adaptive ANN IP core. The final subsection 
analyzes performance improvement of edge gateway due to the integration of adaptive ANN 
IP core. 

5.1 Simulation Results and Analysis 
The collective accuracy analysis of all independent ANN models and the comparison of best 
models with the previously reported work are discussed in the subsequent subsubsections.      

5.1.1 Simulation Classification Accuracy 
All ANN models used feedforward multilayer perceptron with the single hidden layer. The 
number of neurons in the input layer and the output layer is decided from the input features and 
output classes respectively. The number of hidden layer neurons is decided from accuracy 
analysis done on all possible ANN topologies. The seven different ANN designs with distinct 
hidden layer neurons are trained and tested independently on the respective datasets. The 
classification accuracy obtained from testing of all topologies are shown in Fig. 6. The 
topologies of all four classifiers have been decided similarly using respective heterogeneous 
datasets. The final topology with maximum classification accuracy is selected for hardware 
implementation of adaptive ANN classifiers. The weight matrices, bias matrices and input 
layer constants of selected classifiers have been preserved for the adaptive ANN hardware 
implementation. 
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Fig. 6. The classification accuracies comparison of the respective ANN models with different 

combinations of hidden layer neurons. 

5.1.2 Accuracy Comparison 
To validate the performance of our proposed method, we compared our work with previously 

reported results in the literature. Most of them used MLP as a classifier except BP 
classification. Table 3 shows the comparison of simulation result with existing works of 
respective domains. In human activity recognition, the classification accuracy of this work is 
more than [23] , although the output classes used in this work are less than [23]. In the abnormal 
ECG classification, the classification accuracy of this work is more than the others except [24]. 
The BP classification accuracy achieved by this work is almost similar to [31]. Similarly, in the 
gas classification, the achieved accuracy is intermediate among the mentioned work. The 
classification accuracy achieved using our proposed MLP approach is very encouraging as it is 
very close to the best results achieved among most of the mentioned works. In addition, the use 
of this classifier enables us to integrate all the different classifiers into one single adaptive 
ANN.  

 

Table 3. The simulation comparison of MLP designs with reported works for respective data analysis. 

Application Works Feature Used Classification 
Algorithm 

Output 
Classes 

Classification 
Accuracy 

Human 
Activity 

Recognition 

[23] High-level Features 
(PCA) MLP 7 89.20% 

This 
Work Low-level Features MLP 5 96.67% 

Abnormal 
ECG 

Classification 

[42] Normalize Convolute 
Normalize (NCN) MLP 2 96.70% 

[24] 
DWT (48) and 

morphological (16) 
Features 

MLP 2 100% 

[39] Morphological 
Features MLP 2 86.33% 

This 
Work 

Morphological 
Features MLP 2 98.6% 
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Noninvasive 
BP 

Classification 

[31] 
Morphological 

features of PPG and 
ECG 

AdaBoost 3 92% 

This 
Work 

Morphological 
features of PPG and 

ECG 
MLP 3 91.3% 

Gas 
Classification 

[25] NA MLP 1 97.40% 
[38] Sensor values MLP 5 93.75% 
This 

Work Steady-state Feature MLP 4 94% 

5.2 Hardware Results and Analysis 
The adaptive ANN is capable to classify any four types of sensor feature sets by switching a 
select line status. Five hardware versions of adaptive ANN with the different data precision are 
implemented on the FPGA.  The architecture of all versions are kept similar, but the data 
precision of each neuron is set to 32 bit, 24 bit, 16 bit, 12 bit and 8 bit respectively. The best 
adaptive ANN hardware design in the context of hardware resource utilization, classification 
accuracy and power consumption is determined from the classification results and hardware 
implementation reports of all five versions. All five hardware versions of the adaptive ANN 
classifier are synthesized, implemented and tested on FPGA.  

5.2.1 Hardware Classification Accuracy 
Four heterogeneous sets of 300 feature vectors are used for the hardware testing as mentioned 
in the testbed setup (Section 4.4). The classification accuracies of all five adaptive ANN IP 
core are computed on the FPGA. Fig. 7 shows the classification accuracies of all IP cores with 
respective sensors. The classification results show that the classification accuracy is almost 
constant for the all IP cores with different data precision selected in this work. A slight 
reduction in classification accuracy is observed in the case of noninvasive BP classification 
and toxic gas classification compared with simulation accuracy. This effect is observed due to 
the sigmoid function approximation and fixed-point operations. There is negligible change in 
classification accuracy of human activity recognition and abnormal ECG detection compared 
with simulation results. The human activity recognition and abnormal ECG detection are more 
robust compared with BP and gas classification. 

 
Fig. 7. The classification accuracies comparison of adaptive ANN IP cores versions for respective 

sensors. 
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5.2.2 FPGA Resource Utilization 
All version of ANN IP cores are integrated into separate Microblaze test systems, and then 
these designs are synthesized and implemented on the FPGA. The competitive analysis of 
implementation reports of all IP cores is shown in Fig. 8. The important hardware resources 
like LUT Slices, Register Slices, LUT Flip Flop Pairs and DSP are shown in this analysis.  The 
adaptive ANN with 8-bit data precision requires minimum numbers of FPGA resources. 
Although, DSP slices utilization is almost constant from 24-bit to 8-bit precision due to the 
fixed size of DSP Slices (DSP48E1). As mentioned in the above Section 5.2.1, the 
classification accuracy of all IP cores are almost constant. Therefore, the adaptive ANN with 
8-bit precision is more area and resources efficient without compromising the classification 
accuracy. 

 
Fig. 8. Effect of change in precision of adaptive ANN IP cores versions on FPGA resource utilization. 

5.2.3 Estimated Power Consumption 

 
Fig. 9. Effect of change in precision of adaptive ANN IP cores versions on power consumption. 
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As the edge Gateway is battery powered, therefore minimal power consumption has been 
achieved by keeping the operating frequency of the adaptive IP cores at 10 MHz but it 
increases the classification latency. The power estimation of all IP cores are generated 
independently using Vivado power estimation toolbox, all environmental conditions are kept 
constant for IP cores. The estimated power comparison of all five adaptive IP cores is shown in 
Fig. 9. The DSP slices are the majority contributor to the total power consumption in all IP 
cores.  As 32-bit IP core uses 158 DSP slices, therefore it uses 11 milliwatt power out of 24 
mill watts. In remaining cores, DSP slices contribute approximately half of the total power. 
The estimated power consumption is proportional to the FPGA resource utilization. Therefore, 
the adaptive ANN with 8-bit precision is the most efficient adaptive ANN IP core without 
compromising on classification accuracy. 

5.2.4 Classification Latency 
The classification latency of the adaptive ANN IP core is evaluated by analyzing the bus 
transitions of AXI interface that connects the IP core with the test system. Fig. 10 shows the 
important signals transitions of the AXI bus during actual hardware testing of the adaptive 
ANN IP core. It shows one cycle of classification for all four types of sensor feature inputs. 
These transitions are acquired by using the Vivado system debugger during the hardware run. 
As shown in figure Fig. 10, AXI write bus shows writing operations of respective features in 
an IP core, also it sends the sensor type (s) and control signals. The evaluated classification 
outputs are sent back to Microblaze using AXI read bus. AXI write ready and AXI read ready 
singles are bus control signals required for AXI communications. A segment of these 
transitions is zoomed in Fig. 10, which shows classification delay involved in an ECG 
classification. As the architecture of all adaptive ANN versions is similar, therefore, the 
classification latency of all IP cores are also the same i.e. 31 microseconds. This classification 
latency can be easily reduced by increasing the operating frequency of the adaptive ANN, but 
the IP core power consumption also increases proportionally. 
 

 
 

Fig. 10. Timing response of adaptive ANN IP core during live FPGA run for all four heterogeneous 
classifications. 
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5.2.5 FPGA Resource Utilization Comparison 
Table 4. FPGA resource utilization comparison of adaptive ANN with previously reported ANN 

implementations. 

Works Implementations 
Platform 

ANN 
Topology 

Data 
Precision 

(Bits) 

FPGA Resource Utilization 

LUT DSP
48 

Register 
Slices BRAM 

[43] XC5VSX50T 10-3-1 12 8043 70 2243 NA 
[25] Zynq-7000 XC7 12-3-1 24 4032 28 NA 2 
[44] Artix-7 xc7a100t 12-7-3 24 21,658 219 6931 2 
[45] Cyclone V5CEFA9 8-6-1 14 2189 92 3839 NA 
[23] XC6SLX45  6-9-9-7 16 5432 19 4590 65 
[38] XC4020 Ehq208-4 8-4-5 11 1356 NA NA 86 
This 

Work 
Artix-7  

Xc7a35ticsg324-1L 
Adaptive 
Topology 8 3244 79 759 0 

The hardware design with the least resources requirements provides advantage in terms of 
power efficiency and cost. Many attempts have been made to implement  ANN classifiers on 
FPGA for various applications. All of these designs have fixed topologies which are  only 
capable of classify single type of sensor features. The comparison of hardware resource 
utilization of an adaptive ANN IP core (8-bit) with the previously reported ANN 
implementation is shown in Table 4. The data precision of all of these designs are more 
compared to the adaptive ANN, therefore most of them require more hardware resources. All 
of these designs are implemented for single application and are not adaptive. These limitations 
are  removed  using our proposed adaptive ANN approach. Although the proposed IP core is 
designed to classify four types of sensor features, still this IP core outperforms among the most 
of the ANN designs in terms of resource utilization. 

5.3 Edge Gateway Performance Analysis 
After the extensive experimentation and analysis, the adaptive ANN IP core with 8-bit data 
precision is finalized as a real-time heterogeneous sensor input analyzer IP in edge gateway. 
The low latency, throughput reduction and processor offloading are achieved by the 
incorporation of adaptive ANN IP core on the FPGA or SoC Based edge gateway. This IP core 
can classify four types of sensor features in real time. Table 5 shows the percentage saving of 
FPGA resources achieved by proposed IP core. 61% to 97% reduction in respective resource 
utilization has been observed compared with the independent FPGA implementation of all 
four ANN models. Similarly, 44% reduction in estimated power consumption is also achieved 
due to the selection of adaptive ANN model, which significantly improves the performance of 
battery enabled edge gateway.  
 

Table 5. FPGA resource reduction and power consumption saving achieved by adaptive ANN IP core. 

Performance Parameters 
Independent 

Implementation of 
all ANN models 

Adaptive 
ANN 

Resource 
Utilization 
Reduction 

Percent 
Saving 

Estimated Power Consumption 
(milliwatt) 25 mW 14 mW 11 mW 44% 

FPGA 
Resource 

Utilization 

LUTs Slice 10236 3984 6252 61% 
Registers Slice 2313 795 1518 66% 

F7 Muxes 98 3 95 97% 
LUT FF Pairs 1602 618 984 61% 

DSP48 216 79 137 63% 
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96.87% to 98.75% throughput reduction has been achieved by the edge gateway due to the 
proposed IP core. The classification accuracy of human activity recognition and abnormal 
ECG detection are almost equal to the simulation classification accuracy. The response time of 
adaptive ANN IP core is 31 microseconds at 10 MHz operating frequency, due to which edge 
gateway gives the real-time performance. The IP core executes on Programmable Logic (PL) 
of SoC, which offloads the processor from the computation burden of data analysis. In total 
power consumption of edge gateway, the adaptive ANN IP core contributes only 12 milliwatts 
of power at 10 MHz operating frequency. 

6. Conclusion 
The real-time and power-efficient heterogeneous sensor data classification on an edge 
gateway using FPGA based adaptive ANN is implemented in this paper.  At first, four 
independent ANN designs using an optimum number of hidden neurons is designed and later it 
is integrated into a single adaptive ANN. All previously presented ANN implementations use 
higher bit precision, which unnecessarily increases the FPGA resource utilization. After 
extensive experimental analysis, we found that the design with the lowest precision of 8-bit is 
an efficient hardware design. The proposed adaptive ANN performs classification in 
31-microseconds while consuming only 12-milliwatts of power. This performance 
significantly improves the gateway response time by eliminating network delay required for 
the data analysis. The selection of fog computing approach reduces the data throughput around 
96.87% to 98.75%, which saves communication bandwidth requirements and indirectly 
reduces the power consumption involved in data transmission. The adaptive ANN hardware 
design reduces 44% power consumption compared with independent implementations, which 
help to increase the battery life of edge gateway. It also saves 61% to 97% FPGA resources 
utilization, which reduces the total system cost. In time-sensitive and battery operated IoT 
applications, the developed IP core can be used in any Xilinx FPGA/SoC based edge gateway 
by only changing the weights and biases of the adaptive ANN. 
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