DOI QR코드

DOI QR Code

Electrical Leakage Levels Estimated from Luminescence and Photovoltaic Properties under Photoexcitation for GaN-based Light-emitting Diodes

  • Received : 2019.08.16
  • Accepted : 2019.10.10
  • Published : 2019.12.25

Abstract

The electrical leakage levels of GaN-based light-emitting diodes (LEDs) containing leakage paths are estimated using photoluminescence (PL) and photovoltaic properties under photoexcitation conditions. The PL intensity and open-circuit voltage (VOC) decrease because of carrier leakages depending on photoexcitation conditions when compared with reference values for typical LED chips without leakage paths. Changes of photovoltage-photocurrent characteristics and PL intensity due to carrier leakage are employed to assess the leakage current levels of LEDs with leakage paths. The current corresponding to the reduced VOC of an LED with leakage from the photovoltaic curve of a reference LED without leakage is matched with the leakage current calculated using the PL intensity reduction ratio and short-circuit current of the LED with leakage. The current needed to increase the voltage for an LED with a leakage under photoexcitation from VOC of the LED up to VOC of a reference LED without a leakage is identical to the additional current needed for optical turn-on of the LED with a leakage. The leakage current level estimated using the PL and photovoltaic properties under photoexcitation is consistent with the leakage level measured from the voltage-current characteristic obtained under current injection conditions.

Keywords

References

  1. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005). https://doi.org/10.1126/science.1108712
  2. M. Anandan, "Progress of LED backlights for LCDs," J. Soc. Inf. Disp. 16, 287-310 (2008). https://doi.org/10.1889/1.2841864
  3. T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. H. Chen, W. Guo, H.-C. Kuo, and Z. Chen, "Mini-LED and micro-LED: Promising candidates for the next generation display technology," Appl. Sci. 8, 1557 (2018). https://doi.org/10.3390/app8091557
  4. C. J. Raymond and Z. Li, "Photoluminescence metrology for LED characterization in high volume manufacturing," Proc. SPIE 8681, 86810P (2013).
  5. Y. H. Aliyu, D. V. Morgan, and H. Thomas, "A luminescence mapping technique for rapid evaluation of visiblelight- emitting materials used in semiconductor light-emitting diodes," Meas. Sci. Technol. 8, 437 (1997). https://doi.org/10.1088/0957-0233/8/4/011
  6. A. Yamaguchi, S. Komiya, I. Umebu, O. Wada, and K. Akita, "Photoluminescence intensity in InGaAsP/InP doubleheterostructures," Jpn. J. Appl. Phys. 21, L297 (1982). https://doi.org/10.1143/JJAP.21.L297
  7. H. Masui, S. Nakamura, and S. P. DenBaars, "Experimental technique to correlate optical excitation intensities with electrical excitation intensities for semiconductor optoelectronic device characterization," Semicond. Sci. Technol. 23, 085018 (2008). https://doi.org/10.1088/0268-1242/23/8/085018
  8. L. Li, P. Li, Y. Wen, J. Wen, and Y. Zhu, "Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes," Appl. Phys. Lett. 94, 261103 (2009). https://doi.org/10.1063/1.3159629
  9. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, "High-power and high-efficiency InGaN-based light emitters," IEEE Trans. Electron Devices 57, 79-87 (2010). https://doi.org/10.1109/TED.2009.2035538
  10. W.-A. Quitsch, D. Sager, M. Loewenich, T. Meyer, B. Hahn, and G. Bacher, "Low injection losses in InGaN/GaN LEDs: The correlation of photoluminescence, electroluminescence, and photocurrent measurements," J. Appl. Phys. 123, 214502 (2018). https://doi.org/10.1063/1.5022026
  11. J. Kim, S. Kim, H. Kim, W.-J. Choi, and H. Jung, "Effects of carrier leakage on photoluminescence properties of GaNbased light-emitting diodes at room temperature," Curr. Opt. Photon. 3, 164-171 (2019). https://doi.org/10.3807/COPP.2019.3.2.164
  12. R. W. Drinker, J. S. Vermaak, M. J. Cohen, L. J. Bentell, M. J. Fox, M. H. Ettenberg, M. J. Lange, and G. H. Olsen, "Correlation of shunt resistance with InGaAs layer photoluminescence intensity for 2200 nm cutoff InGaAs photodiodes," in Proc. the 14th Indium Phosphide and Related Materials Conference (IEEE, Sweden, May 2002), pp. 631-634.
  13. J. Kim, H. Kim, S. Kim, H. Jeong, I.-S. Cho, M. S. Noh, H. Jung, and K. C. Jin, "Properties of defective regions observed by photoluminescence imaging for GaN-based light-emitting diode epi-wafers," J. Opt. Soc. Korea 19, 687-694 (2015). https://doi.org/10.3807/JOSK.2015.19.6.687
  14. O. Breitenstein, J. Bauer, T. Trupke, and R. A. Bardos, "On the detection of shunts in silicon solar cells by photoand electroluminescence imaging," Prog. Photovoltaics 16, 325-330 (2008). https://doi.org/10.1002/pip.803
  15. T. Trupke, J. Nyhus, and J. Haunschild, "Luminescence imaging for inline characterisation in silicon photovoltaics," Phys. Status Solidi RRL 5, 131-137 (2011). https://doi.org/10.1002/pssr.201084028
  16. Y. Augarten, T. Trupke, M. Lenio, J. Bauer, J. W. Weber, M. Juhl, M. Kasemann, and O. Breitenstein, "Calculation of quantitative shunt values using photoluminescence imaging," Prog. Photovoltaics 21, 933-941 (2013). https://doi.org/10.1002/pip.2180
  17. J.-H. Song, H.-J. Kim, B.-J. Ahn, Y. Dong, S. Hong, J.-H. Song, Y. Moon, H.-K. Yuh, S.-C. Choi, and S. Shee, "Role of photovoltaic effects on characterizing emission properties of InGaN/GaN light emitting diodes," Appl. Phys. Lett. 95, 263503 (2009). https://doi.org/10.1063/1.3272679
  18. H.-J. Kim, G.-H. Ryu, W.-B. Yang, and H.-Y. Ryu, "Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics," J. Korean Phys. Soc. 65, 1639-1643 (2014). https://doi.org/10.3938/jkps.65.1639
  19. C.-H. Oh, J.-I. Shim, and D.-S. Shin, "Current-voltage characteristics of InGaN/GaN blue light-emitting diodes investigated by photovoltaic parameters," Jpn. J. Appl. Phys. 58, 012005 (2019). https://doi.org/10.7567/1347-4065/aae92f
  20. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, UK, 2006), Chapters 3-4.
  21. M. D. Abbott, R. A. Bardos, T. Trupke, K. C. Fisher, and E. Pink, "The effect of diffusion-limited lifetime on implied current voltage curves based on photoluminescence data," J. Appl. Phys. 102, 044502 (2007). https://doi.org/10.1063/1.2756529
  22. R. Dumbrell, M. K. Juhl, T. Trupke, and Z. Hameiri, "Comparison of terminal and implied open-circuit voltage measurements," IEEE J. Photovoltaics 7, 1376-1383 (2017). https://doi.org/10.1109/JPHOTOV.2017.2729889
  23. S.-H. Lim, Y.-H. Ko, and Y.-H. Cho, "A quantitative method for determination of carrier escape efficiency in GaN-based light-emitting diodes: A comparison of open- and short-circuit photoluminescence," Appl. Phys. Lett. 104, 091104 (2014). https://doi.org/10.1063/1.4867238
  24. K. Wang, D. Imai, K. Kusakabe, and A. Yoshikawa, "Proposal of leak path passivation for InGaN solar cells to reduce the leakage current," Appl. Phys. Lett. 108, 042108 (2016). https://doi.org/10.1063/1.4940970
  25. H. Kurokawa, M. Kaga, T. Goda, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, "Multijunction GaInN-based solar cells using a tunnel junction," Appl. Phys. Express 7, 034104 (2014). https://doi.org/10.7567/APEX.7.034104