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I. INTRODUCTION

Research on light passing through disordered scattering 

medium has experienced an obvious burst of interest over 

the last decade. Unlike a wavefront propagating in a 

uniform medium or free space, light spreads unexpectedly 

in a disordered medium such as biological tissues, white 

powders and random nanostructures. Disordered scattered 

particles arranged in the medium will hinder the free 

transmission of the optical wave and cause the direction of 

wave vector to change randomly. This phenomenon will 

bring completely scrambled distributions in both transmitted 

and back scattering directions, bearing no clear relation to 

the incident waveform [1-3].

Nonetheless, recent studies have shown that the speckle 

patterns can be controlled under conditions where the 

wavefront can be acquired and the disordered medium is 

stationary during the wavefront recording process [4-6]. 

Vellekoop et al. has demonstrated that wave focusing [7, 8] 

and Choi et al. proved spatial resolution in imaging can be 

enhanced by the use of a disordered medium beyond the 

limits of a conventional imaging system [9, 10]. In essence, 

these methods use the linearity and time-reversal symmetry 

of the wave propagation, a ‘transmission matrix’ (TM) 

describes the input-output response of a disordered medium, 

which not only connects the incident waves with the 

speckle patterns but also provides penetrating insights on 

the disordered medium. In these applications such as 

pattern reconstruction and optical focusing, which depend 

on the TM, the accuracy of measurement plays the most 

important role for bringing the direct effects to the results.

Following these pioneering works, researchers pointed 

out that varieties of factors will affect the measurement 

accuracy of the TM, such as the characteristics of polari-

zation, the choice of reference and the modulation of the 

incident wave [11-13] and the noise level [14]. In this paper, 

we report a principle to eliminate some adverse impacts 

in the measurement process. A new equation describing 

the TM with contributions of Gaussian noise is proposed 

closer to the actual situation which can help us to remove 

the noise.

II. METHODS

In previous works, researchers have considered that, light 
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transport through a scattering medium can be characterized 

by a TM model: 
out in

,m m n n
n

E t E=∑ , the complex coefficients 

,m n
t  connecting the nth input free mode or channel and the 

mth output free mode, is an entity of the TM, the model 

describes itself as Eq. (1):
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The transmission matrix T stands for the optical trans-

formation of the disordered medium, the incident optical 

field E
in is reorganized into an 1n×  vector and the relative 

output field E
out is described by an 1m×  vector as well. 

In this model, the entries (or elements) of T are assumed to 

obey the complex Circular Gaussian distribution with zero 

mean and variance 2
1σ =  in both real and imaginary parts.

The model in Eq. (1) is simple enough and helpful for 

us to obtain the optical quantification effect of the disordered 

medium. Nevertheless, we believe that the factor of noise 

makes its contributions to the output optical field in 

practical applications, using the model in Eq. (1) ignores 

the effect of noise, which shall prevent us from knowing 

the true nature of the transmission matrix, that is the 

disordered medium. Thus, we propose an improved model 

of TM calculating the noise as Eq. (2):

out in
,= +E TE N  (2)

where N denotes the 1-dimensional noise matrix, specifically, 

in Eq. (2) and in Eq. (3), the N is an 1m×  vector as well. 

For any stationary disordered medium, the noise matrix is 

determined by the system and is static.

To eliminate the effect of noise, we should first measure 

all the responses of the system’s basis input free modes, 

as well as the known the unitary matrix. The optimal and 

most efficient unitary matrix has been proved to be the 

Hadamard matrix, in which the elements are either +1 or 

-1 in phase, and any two rows (or two columns) are 

orthogonal as the input basis. Implementing the positive and 

negative Hadamard matrix sequentially as Eq. (3) shows:
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The transmission matrix can be solved by:

out out T 2

pos neg( ) 0.5 ,
n

n
−

= − ×T E E H  (4)

where 
out

pos
E  and 

out

neg
E  are the complex field of responses 

taking positive Hadamard matrix and negative Hadamard 

matrix as the system’s input waves, respectively. Hn is a 

Hadamard matrix with dimension of n × n, the number n is 

restricted by ( 2
i

n = , i = 1, 2, 3...), in which the elements 

are either +1 or -1 in phase, and any two rows (or two 

columns) are orthogonal as the input basis [15-18]. The mark 

(·)T represents the complex matrices’ conjugate transpose 

operation.

III. EXPERIMENTS AND RESULTS

The experimental setup is shown in Fig. 1. A cw laser 

beam ( 532λ =  nm) passes through the first microscope 

(NA = 0.25) and a Fourier lens (f = 100 mm) which are 

combined for alignment and expansion. A pinhole is placed 

on the focal plane of the microscope, working as a spatial 

filter. The collimated beam reflected by BS1 is reflected 

by BS2 again to illuminate the phase-only spatial light 

modulator (SLM, Holoeye PLUTO-VIS-016). The screen 

of SLM modulates the phase of the plane wave light into 

the incident wave front. The other objective (NA = 0.75) 

acts as a beam concentrator to the disordered medium 

sample. In our setup, the medium is produced by Zinc 

Oxide (ZnO) particles of 50 nm in diameter, with 70 um 

thick and 7.2 ± 3 um mean free path. The transmitted light 

is collected by the last microscope with NA = 0.75. The 

speckle-like output is recorded by the charge-coupled device 

FIG. 1. Experimental setup, measuring the transmission 

matrix. M1, M2, M3: microscope 1, 2 and 3; BS: beam 

splitter; P1, P2: polarizer 1 and 2, their long axis are adjusted 

in horizontal both. The M2 and M3 are placed in coupling 

position with each other, but the SLM and CCD are not 

specifically required to be placed on the backfocal plane of 

M2 and M3, respectively, because every element between 

SLM and CCD consists the transmission system.
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(CCD, Thorlabs, DCU224C, 1280*1024, with 4.64 × 4.65 

um2 pixel size) placed behind of polarizer 2. Two polarizers 

P1 and P2 are placed in front of the SLM and the CCD, 

respectively, to make sure the input-output relationship is 

limited in scalar, especially to make sure the SLM works 

as phase-only modulator along with incident light polarized 

in the horizontal direction.

In our experiment, the scattering sample is composed of 

zinc oxide (ZnO) particles with diameter of 50 nm, sprayed 

onto a microscope cover glass, with 70 um thick and 7.2 3±  

um mean free path, with these characteristics, the average 

transmission of our strongly disordered sample is 0.1%T ≈ .
In order to obtain the coefficients tmn, the output field 

must be recorded as complex distribution as well, a 

technique called phase-shifting interferometry is applied to 

resolve the complex amplitude of output [19-21]. The mth 

output field can be calculated from 
out 1 5 3( 2 )
m m m m

E I I I= + − +

2 42* j( )
m m
I I− , where 

1

m
I  to 

5

m
I  are the CCD captured 

intensities at shift amount of 0, π/2, π, 3π/2, 2π, respectively.

Considering the entrance pupil of objective (NA = 0.75), 

limited pixels of SLM are active or detectable and form a 

circular area, this area contains two main sections of a 

rectangular controlled part which inscribes the pupil and a 

reference part which occupies the remaining pixels. These 

two parts make the system an on-axis interferometer. After 

loading rows (or columns) of the Hadamard matrix to the 

SLM screen and saving corresponding pictures of five-step 

shifts captured by the CCD, we can calculate out the 

transmission matrix. In our experiment, 32 × 32 incident 

modes are employed, taking 640 × 640 SLM pixels, and 

the number of pixels employed from the CCD is 256 ×

256. The measurement process requires approximately 15 

minutes, fixed modulator refresh rate is the main reason 

for time consumption. Decreasing the pixels of SLM and 

CCD used will accelerate the process procedure but the 

accuracy will be reduced simultaneously. After performing 

all the Hadamard basis to complete the measurement, the 

property of TM can be expressed as:

out in
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Figure 2 shows two simple applications exploiting the 

TM of a disordered medium based on Eq. (5) and phase 

conjugation [22-27]. a pattern like the letter N is displayed 

and illuminated in the SLM. Then modulated light goes 

through and gets scattered by the disordered medium. The 

speckle captured by the CCD is regarded as the pattern 

multiplied by the TM. By using Eq. (5) the input pattern 

can be reconstructed. In other words, the letter N in this 

example will show up. The second row of Fig. 2 shows a 

more practical application of optical focusing or imaging. 

Designed focusing or imaging effects are generated in the 

computer firstly. Then multiplying it by the transpose 

conjugation of TM gives us the relative phase pattern that 

looks like the middle picture in the second row, displaying 

the pattern onto the SLM (in gray scale), the desired 

focusing points or images will appear in the camera 

rapidly.

The best way to verify the physical relevance between 

our measured TM and the optical system is to perform an 

optical focusing or imaging process on arbitrary output 

locations. That is to say, to apply the second application 

shown in Fig. 2. When we calculate the modulation phase 

pattern from a target we want, by using Eq. (5), and put 

the phase pattern on the SLM screen, a focus or image 

shape will appear on the CCD.

The most significant advantage of our method is the 

promotion of signal to noise ratio (SNR). Because the 

intensity of transmitted light over a disordered medium is 

very weak, the desired signal we modulated is easily drowned 

in the noise background. Figure 3 shows the comparison 

of these two situations at the same focus position. In Fig. 

3(b) it is clear that the contrast of the focus is obviously 

improved. Figure 3(c) shows the SNR has been enhanced 

about 8 dB = 10log(225 /100). The raw SNR of a light 

passing through the disordered medium is indicated by the 

transmittance of the scattering sample and the number of 

controlled incident modes, in our experiment, the transmit-

tance is 0.1%T ≈  and with 32 × 32 incident modes.

Besides, we tried simple image experiments. In principle, 

the process of imaging is equivalent to controlling neigh-

boring pixels focus, but needs more energy to be controllable 

and thus requires a high SNR. Figure 4 shows the vertical 

and horizontal lines as simple images and an initial letter 

of NJUST in Fig. 4(c).

In order to get a high SNR focusing or imaging results, 

fundamentally, increasing the number of modes of the 

incident wave is the most straightforward idea. While the 

FIG. 2. Two simple applications. The first row shows the 

process of digital reconstruction, we display one binary 

pattern of letter N on the SLM and capture the relative speckle 

image on CCD plane, then reconstruct the pattern digitally 

from this speckle image. The second row shows the optical 

focusing or imaging. The first subfigure in this row is the 

target we want, transform this target by TT, we thus have the 

pattern (in phase map, [0, 2π ]), as the second subfigure 

shows, then display this pattern on SLM, the focusing point is 

immediately produced on the CCD plane.
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proportion of the modulation part increases, more controllable 

modes are in use, as un-modulated portions will have an 

adverse effect on the result. However, increasing the 

modes of the incident wave will make the burden increase 

significantly not only in data acquirement, but also in data 

processing. Time cost increased to about one hour when 

64 × 64 input modes participated according to our experi-

ence, and a much larger dimension of data is very difficult 

and nearly cannot be calculated. With these difficulties, 

our method to improve on the accuracy of the TM’s 

measurement, provides an easy and cost-effective choice to 

get satisfactory results.

IV. DISCUSSION

The transmission matrix singular values (or eigenvalues) 

guarantee the maximal and minimal transmitted fluxes. The 

corresponding eigenvectors are the optimal input wavefronts 

that the SLM should modulate. To study the eigenvalues, 

we perform the SVD tool:

T
,=T UΣV  (6)

where Σ is a diagonal matrix with non-negative real numbers 

on the diagonal, also called eigenvalues or singular values. 

The V and U are unitary matrices mapping the input 

channels (Ein) to eigenchannels, and eigenchannels to output 

channels (Eout), respectively.

In our paper, the measured TM with m × n (m > n) 

dimension meets the independent Gaussian distribution, thus 

the distribution of eigenvalues of T
/mTT , asymptotically 

approaches the Marčenko-Pastur (M-P) law [28, 29], when 

c = m/n it reads:

1
( ) ( )( )

2
a b

c
ρ τ τ τ

πτ
= − − , (7)

where τ  are the entries of Σ decomposed by the SVD in 

Eq. (6), 
2

min
(1 )b cτ = = −  and 

2

max
(1 )a cτ = = + . In order 

to simplify the calculation and without loss of generality, 

we take the number of m = n = 1024, that is to say we can 

select a sub-area with dimension of 32 × 32 from E
out. 

Thus in Figs. 5 and 6, c = 1 and the RMT’s prediction is 

0 ≤ τ ≤ 4. We use the Empirical Distribution Functions 

(EDF) to describe the distribution of singular values 

because our TM’s dimension is limited while the Random 

Matrix is theoretically infinite. Figures 5(a) and 5(b) show 

the Empirical Distribution Functions (EDF) of singular 

values of TM based on measurement results of Eqs. (1) 

and (4), respectively. In this figure, the horizontal axis is 

the range of singular values, and the vertical axis is the 

relative probability density. Obviously, the distribution of 

noise elimination is more proper than the non-eliminating 

one, the singular values in Fig. 5(b) which beyond the 

range is less than the singular values in Fig. 5(a).

However, as the laser beam is a coherent source, which 

causes significant correlation effects between neighboring 

or contiguous pixels on the CCD [30]. From Fig. 5, it is 

obvious that, most yellow bins don’t reach the blue lines, 

it means the interference does weaken the transmitted fluxes. 

To avoid this, we pick the 1024 pixels from a 256 × 256 

(a) (b) (c)

FIG. 3. The comparison of single point focus of two situations. (a) and (b) show the single focus on the CCD plane before and after 

noise elimination. The blue line and red line in (c) indicate the plot of the peaks in (a), (b), respectively.

(a) (b) (c)

FIG. 4. Simple image. (a) (b) vertical and horizontal lines imaged at the CCD, (c) the N letter imaged at the CCD plane.
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output mode randomly, instead of the continuous pixels 

above.

The existence of correlations prevents the generation of 

truly independent random numbers through coherent diffu-

sion. Figure 6 shows the results with and without noise 

elimination, unlike in Fig. 5, the transmission eigenvalues 

calculated in Fig. 6 have been de-correlated. After the 

de-correlation, the output modes are closer to the random 

distribution, which means the optical transform of the 

disordered medium is a naturally random process.

V. CONCLUSION

In summary, our proposed method updates the model both 

in TM measurement and calculating. We first developed an 

equation connecting input and output free modes considering 

a noise factor which demonstrates the derivation of noise 

elimination progress. Then we experimentally performed the 

optical measurement of disordered medium’s TM, achieving 

a series of results which are more consistent with theory. 

This method can significantly improve the accuracy of the 

TM’s measurement, improve the SNR of focusing passing 

though the scattering medium, and even more it will help 

us to approach the true nature of the optical disordered 

medium. This method is validated on three criteria: quality 

of pattern reconstruction, quality of focusing and distribution 

of singular values.
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(a) (b)

FIG. 5. The EDF of singular values of T
/mTT , c= 1. Yellow bins in (a), (b) plot the histogram of the m = n = 1024 eigenvalues of 

T
/mTT  before and after noise eliminating, respectively. Blue lines in each figure are the prediction as M-P law model, x axis is the 

normalized singular value τ. The most right-side bins in (a) exceeds the maximum value of M-P law indicated.

(a) (b)

FIG. 6. The EDF of singular values of T
/mTT , c= 1, without correlation effect. Yellow bins in (a), (b) plot the histogram of the 

m = n = 1024 eigenvalues of T
/mTT  before and after noise eliminating, respectively. Blue lines in each figure are the prediction as 

M-P law indicated.
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