References
- C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, "Human skin wounds: a major and snowballing threat to public health and the economy," Wound Repair Regen. 17, 763-771 (2009). https://doi.org/10.1111/j.1524-475x.2009.00543.x
- N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev, and R. F. Diegelmann, "Impaired wound healing," Clin. Dermatol. 25, 19-25 (2007). https://doi.org/10.1016/j.clindermatol.2006.12.005
- D. R. Bickers, H. W. Lim, D. Margolis, M. A. Weinstock, C. Goodman, E. Faulkner, C. Gould, E. Gemmen, and T. Dall, "The burden of skin diseases: 2004 a joint project of the american academy of dermatology association and the society for investigative dermatology," J. Am. Acad. Dermatol. 55, 490-500 (2006). https://doi.org/10.1016/j.jaad.2006.05.048
- M. Takeo, W. Lee, and M. Ito, "Wound healing and skin regeneration," Cold Spring Harbor Perspect. Med. 5, a023267 (2015). https://doi.org/10.1101/cshperspect.a023267
- R. Blakytny, and E. Jude, "The molecular biology of chronic wounds and delayed healing in diabetes," Diabet. Med. 23, 594-608 (2006). https://doi.org/10.1111/j.1464-5491.2006.01773.x
- H. Brem and M. Tomic-Canic, "Cellular and molecular basis of wound healing in diabetes," J. Clin. Invest. 117, 1219-1222 (2007). https://doi.org/10.1172/JCI32169
- B. Behm, P. Babilas, M. Landthaler, and S. Schreml, "Cytokines, chemokines and growth factors in wound healing," J. Eur. Acad. Dermatol. Venereol. 26, 812-820 (2012). https://doi.org/10.1111/j.1468-3083.2011.04415.x
- P. Olczyk, L. Mencner, and K. Komosinska-Vassev, "The role of the extracellular matrix components in cutaneous wound healing," BioMed Res. Int. 2014, 747584 (2014).
-
F. M. Ashcroft and P. Rorsman, "Diabetes mellitus and the
$\beta$ cell: the last ten years," Cell 148, 1160-1171 (2012). https://doi.org/10.1016/j.cell.2012.02.010 - A. Kasuya and Y. Tokura, "Attempts to accelerate wound healing," J. Dermatol. Sci. 76, 169-172 (2014). https://doi.org/10.1016/j.jdermsci.2014.11.001
- L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 348-364 (2016). https://doi.org/10.1109/JSTQE.2016.2561201
- D. Barolet, "Light-emitting diodes (LEDs) in dermatology," Semin. Cutan. Med. Surg. 27, 227-238 (2008). https://doi.org/10.1016/j.sder.2008.08.003
- M. A. D. Agnol, R. A. Nicolau, C. J. D. Lima, and E. Munin, "Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats," Lasers Med. Sci. 24, 909 (2009). https://doi.org/10.1007/s10103-009-0648-5
- K. Kalka, H. Merk, and H. Mukhtar, "Photodynamic therapy in dermatology," J. Am. Acad. Dermatol. 42, 389-413 (2000). https://doi.org/10.1016/S0190-9622(00)90209-3
- M. R. Hamblin and T. N. Demidova, "Mechanisms of low level light therapy," Proc. SPIE 6140, 614001 (2006).
- H. S. Yu, C. S. Wu, Y. H. Kao, M. H. Chiou, and C. L. Yu, "Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo," J. Invest. Dermatol. 120, 56-64 (2003). https://doi.org/10.1046/j.1523-1747.2003.12011.x
- D. Hawkins, N. Houreld, and H. Abrahamse, "Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing," Ann. N. Y. Acad. Sci. 1056, 486-493 (2005). https://doi.org/10.1196/annals.1352.040
- A. C.-H. Chen, Y. Y. Huang, S. K. Sharma, and M. R. Hamblin, "Effects of 810-nm laser on murine bone-marrowderived dendritic cells," Photom. Laser Surg. 29, 383-389 (2011). https://doi.org/10.1089/pho.2010.2837
- W. Lim, S. Lee, I. Kim, M. Chung, M. Kim, H. Lim, J. Park, O. Kim, and H. Choi, "The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors," Lasers Surg. Med. 39, 614-621 (2007). https://doi.org/10.1002/lsm.20533
- R. J. Lanzafame, R. R. Blanche, A. B. Bodian, R. P. Chiacchierini, A. Fernandez-Obregon, and E. R. Kazmirek, "The growth of human scalp hair mediated by visible red light laser and LED sources in males," Lasers Surg. Med. 45, 487-495 (2013). https://doi.org/10.1002/lsm.22173
- S. Pfaff, J. Liebmann, M. Born, H. F. Merk, and V. V. Felbert, "Prospective randomized long-term study on the efficacy and safety of UV-free blue light for treating mild psoriasis vulgaris," Dermatology 231, 24-34 (2015). https://doi.org/10.1159/000430495
- J. Petroski, "Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications," Proc. SPIE 4776, 215-222 (2002).
- Y. Jeon, H.-R. Choi, M. Lim, S. Choi, H. Kim, J. H. Kwon, K.-C. Park, and K. C. Choi, "A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects," Adv. Mater. Technol. 3, 1700391 (2018). https://doi.org/10.1002/admt.201700391
- Y. Chen, Q. Yu, and C.-B. Xu, "A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software," Int. J. Clin. Exp. Med. 10, 14904-14910 (2017).
- Y. Fujimaki, T. Shimoyama, Q. Liu, T. Umeda, S. Nakaji, and K. Sugawara, "Low-level laser irradiation attenuates production of reactive oxygen species by human neutrophils," J. Clin. Laser Med. Surg. 21, 165-170 (2003). https://doi.org/10.1089/104454703321895635
- Y.-S. Chen, S.- F. Hsu, C. W. Chiu, J. G. Lin, C. T. Chen, and C. H. Yao, "Effect of low-power pulsed laser on peripheral nerve regeneration in rats," Microsurgery 25, 83-89 (2005). https://doi.org/10.1002/micr.20079
- M. Miloro, L. E. Halkias, S. Mallery, S. Travers, and R. G. Rashid, "Low-level laser effect on neural regeneration in Gore-Tex tubes," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 93, 27-34 (2002). https://doi.org/10.1067/moe.2002.119518
- P. Balaban, R. Esenaliev, T. Karu, E. Kutomkina, V. Letokhov, A. Oraevsky, and N. Ovcharenko, "He-Ne laser irradiation of single identified neurons," Lasers Surg. Med. 12, 329-337 (1992). https://doi.org/10.1002/lsm.1900120315
- J. A. Zecha, J. E. Raber-Durlacher, R. G. Nair, J. B. Epstein, S. T. Sonis, S. Elad, M. R. Hamblin, A. Barasch, C. A. Migliorati, D. M. Milstein, M. T. Genot, L. Lansaat, R. van der Brink, J. Arnabat-Dominguez, L. van der Molen, I. Jacobi, J. van Diessen, J. de Lange, L. E. Smeele, M. M. Schubert, R. J. Bensadoun, "Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations," Support. Care. Cancer 24, 2781-2792 (2016). https://doi.org/10.1007/s00520-016-3152-z
- V. P. Wagner, M. Curra, L. P. Webber, C. Nor, U. Matte, L. Meurer, and M. D. Martins, "Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats," Lasers Med. Sci. 31, 665-671 (2016). https://doi.org/10.1007/s10103-016-1904-0
- N. Ferrara, "Vascular endothelial growth factor: basic science and clinical progress," Endocr. Rev. 25, 581-611 (2004). https://doi.org/10.1210/er.2003-0027
-
J. Massague, S. W. Blain, and R. S. Lo, "
$TGF{\beta}$ signaling in growth control, cancer, and heritable disorders," Cell 103, 295-309 (2000). https://doi.org/10.1016/S0092-8674(00)00121-5 - M. Presta, P. Dell'Era, S. Mitola, E. Moroni, R. Ronca, and M. Rusnati, "Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis," Cytokine. Growth Factor Rev. 16, 159-178 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.004
- A. Mauviel, M. Daireaux, F. Redini, P. Galera, G. Loyau, and J. P. Pujol, "Tumor necrosis factor inhibits collagen and fibronectin synthesis in human dermal fibroblasts," FEBS Lett. 236, 47-52 (1988). https://doi.org/10.1016/0014-5793(88)80283-7
- J. A. Solis-Herruzo, D. A. Brenner, and M. Chojkier, "Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts," J. Biol. Chem. 263, 5841-5845 (1988). https://doi.org/10.1016/S0021-9258(18)60642-8
- H. H. Steenfos, T. K. Hunt, H. Scheuenstuhl, and W. H. Goodson, "Selective effects of tumor necrosis factor-alpha on wound healing in rats," Surgery 106, 171-176 (1989).
- M. Brauchle, K. Angermeyer, G. Hubner, and S. Werner, "Large induction of keratinocyte growth factor expression by serum growth factors and pro-inflammatory cytokines in cultured fibroblasts," Oncogene 9, 3199-3204 (1994).
- N. N. Houreld, R. T. Masha, and H. Abrahamse, "Lowintensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells," Lasers Surg. Med. 44, 429-434 (2012). https://doi.org/10.1002/lsm.22027
- K. Lacjakova, N. Bobrov, M. Polakova, M. Slezak, M. Vidova, T. Vasilenko, M. Novotny, F. Longauer, L. Lenhardt, J. Bober, M. Levkut, F. Sabol, and P. Gal, "Effects of equal daily doses delivered by different power densities of low-level laser therapy at 670 nm on open skin wound healing in normal and corticosteroid-treated rats: a brief report," Lasers Surg. Med. 25, 761-766 (2010).