DOI QR코드

DOI QR Code

A closed loop wireless transmission method adaptive to mobile speed and its performance analysis

이동 속도 감응형 폐순환 무선전송기법 및 성능 분석

  • Received : 2019.09.04
  • Accepted : 2019.09.24
  • Published : 2019.12.31

Abstract

A closed loop wireless transmission method adaptive to mobile unit speed is proposed in this paper. A mobile communication node measures the mobile speed based on the transmitted pilot signals through Doppler frequency estimation, and it changes the transmission period of pilot signals as per estimated mobile speed adaptively. The pilot signals with the different transmission periods are transmitted using the different PN sequences with the previous ones without any explicit information about the new period. The corresponding receiver node can detect and extract the transmitted pilot signals through blind search of the transmitted PN sequences of the pilot signals, and it can demodulate and decode the transmitted information using the channel estimation results based on the detected pilot signals. The performance of the proposed method had been analyzed through the simulation under the fading channel environments and compared with the previous methods. The simulation results showed performance improvement of the proposed method over the existing ones.

본 논문은 이동 속도 감응형 폐순환 무선전송기법 및 성능 분석에 관한 것으로서, 이동 속도에 따라 송신부에서 파일럿 신호를 전송하는 주기를 변경하고, 폐순환 동작을 위해 수신부에서 필요한 변경된 파일럿 신호 전송 주기에 대한 정보를 송신부에서 직접 전송하지 않더라도 수신부에서 전송된 파일럿 신호에 기반하여 간접적으로 이에 대한 정보를 추출할 수 있도록 하는 이동 속도 감응형 폐순환 무선전송기법을 제안하고, 제안된 기법의 우수성을 입증하기 위하여 페이딩 채널 환경에서 모의실험을 통하여 제안된 방법의 성능을 검증하였다. 성능 검증결과, 기존 방법과 비교하여 본 논문에서 제안하는 방법은 추가 전송되는 오버헤드 없이도 기존 방법의 성능을 뛰어넘는 우수한 성능을 보임을 확인하였다.

Keywords

Acknowledgement

This work has been supported by Agency for Defense Development (ADD).(UD180023ED)

References

  1. M. Rinne, K. Pajukoski, M. Kuusela, K. Pedersen, J. Ojala, E. Tuomaal, I. Kovacs, H. Wang, P. Michaelsen, C. Rosa, and J. Michael, "Evaluation of the recent advances of the evolved 3G (E-UTRA) for the VoIP and best effort traffic scenarios," IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Helsinki: FI, pp. 1-6, 2007.
  2. N. M. Kumaran, Principles of Wireless Communications, Scholars-Press Publication, 2017.
  3. M. Lenardi and D. T. M. Slock, "Channel estimation for a discrete-time RAKE receiver in a WCDMA downlink: algorithms and repercussions on SINR," IEEE 54th Vehicular Technology Conference, Atlantic City: NJ, pp. 2360-2363, 2001.
  4. S. Pratschner, E. Zochmann and M. Rupp, "Low Complexity Estimation of Frequency Selective Channels for the LTE-A Uplink," IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 673-676, Dec. 2015. https://doi.org/10.1109/LWC.2015.2481428
  5. S. Beygi and U. Mitra, "Structured estimation of timevarying narrowband wireless communication channels," IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans:LA, pp. 3529-3533, 2017.
  6. M. K. Tsatsanis and Z. Xu, "Pilot symbol assisted modulation in frequency selective fading wireless channels," IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2353-2365, Aug. 2000. https://doi.org/10.1109/78.852016
  7. H. Yuan, Y. Ling, H. Sun and W. Chen, "Research on channel estimation for OFDM receiver based on IEEE 802.11a," 6th IEEE International Conference on Industrial Informatics, Daejeon: KR, pp. 35-39, 2008.
  8. T. Wang, A. Hussain, Y. Cao, and S. Gulomjon, "An Improved Channel Estimation Technique for IEEE 802.11p Standard in Vehicular Communications," Sensors, vol. 19, no. 1, pp. 1-22, 2019. https://doi.org/10.1109/JSEN.2018.2879233
  9. W. Lee, N. Kim, and B. Lee, "An Adaptive Transmission Power Control Algorithm for Wearable Healthcare Systems Based on Variations in the Body Conditions," Journal of Information Processing Systems, vol. 15, no. 3, pp. 593-603, June, 2019. https://doi.org/10.3745/jips.03.0118