DOI QR코드

DOI QR Code

Detection Range Improvement of Radiation Sensor for Radiation Contamination Distribution Imaging

방사선 오염분포 영상화를 위한 방사선 센서의 탐지 범위 개선에 관한 연구

  • Received : 2019.09.25
  • Accepted : 2019.10.18
  • Published : 2019.12.31

Abstract

To carry out safe and rapid decontamination in radiological accident areas, acquisition of various information on radiation sources is needed. In particular, to figure out the location and distribution of radiation sources is essential for rapid follow-up and removal of contaminants as well as minimizing worker damage. The radiation distribution detection device is used to obtain the position and distribution information of the radiation source. In the case of a radiation distribution detection device, a detection sensor unit is generally composed of a single sensor, and the detection range is limited due to the physical characteristics of the single sensor. We applied a calibration detector for controlling the detection sensitivity of a single sensor for radiation detection and improved the limited detection range of radiation dose rate. Also, gamma irradiation test confirmed the improvement of radiation distribution detection range.

방사선 사고 지역 및 제염이 필요한 지역에서의 안전하고 신속한 제염작업을 진행하기 위해서는 방사선 오염원에 대한 다양한 정보 획득이 필요하다. 특히 방사선원의 정확한 위치와 분포 정보의 파악은 신속한 후속 조치 및 오염원 제거를 위해 반드시 필요하며, 작업자의 방사선 피폭을 최소화할 수 있다. 방사선원의 위치와 분포 정보를 획득하기 위해서는 방사선 분포 탐지 장치를 사용한다. 방사선 분포 탐지 장치의 경우 일반적으로 탐지 센서 부가 단일 센서로 구성되며, 단일 센서의 물리적 한계로 인해 탐지 범위가 제한되는 문제점이 있다. 본 논문에서는 방사선 오염 분포 영상화 장치에 사용되는 단일 센서의 탐지 감도 제어를 위하여 보정 검출기를 적용하였으며, 이를 통해 제한적이었던 선량률 탐지 범위를 향상하였다. 또한 감마선 조사 시험을 통해 방사선 분포 탐지 범위의 개선을 확인하였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF) funded by the Korea government(MSIT: Ministry of Science and ICT) (No. 2018M2A8A5083266) and this research was a part of the project titled ' Development of Distributed Underwater Monitoring & Control Networks ', funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Fukushima Daiichi nuclear disaster[Internet].Available: https://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster.
  2. H. S. Jung, S. S. Kim, and S. W Youn, "Nuclear Policy Brief Report", Nuclear Decommissioning Industry Enhancement Project, pp. 1-12, 2019.
  3. K. A. Hughes, G. Mottershead, D. J. Thornley, and A. P. Comrie, "Use of gamma ray imaging instrumentation in support of TRU waste characterization challenges", in Proc. WM'04 Conf. Rec., 2004.
  4. Koichi Okadaa, Takahiro Tadokoroa, Yuichiro Uenob, Jun Nukagaa, Takafumi Ishitsub, Isao Takahashib, Yasutake Fujishimac, Katsumi Hayashic and Kenichi Nagashimad, "Development of a gamma camera to image radiation fields", Progress in Nuclear Science and Technology, Vol 4, pp. 14-17, 2014. https://doi.org/10.15669/pnst.4.14
  5. K. A. Hughes, G. Mottershead, D. J. Thornley, and A. P. Comrie, "Use of gamma ray imaging instrumentation in support of TRU waste characterization challenges", in Proc. WM'04 Conf. Rec., 2004.
  6. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, ch. 12, 1999.
  7. A. Fisher and P. Chard, "Use of a gamma-imaging device to optimise measurement of uranium hold-up", Proc. Of the 25 Annual Safeguards Research and Development Association (ESARDA) Symposium on Safeguards and Nuclear Materials Management, Stockholm, 2003.
  8. N. H. Lee, Y. G. Hwang, and S.Y. Park, "Development of Three-Dimensional Gamma-ray Camera", Journal of the Korea Institute of Information and Communication Engineering, Vol. 19, No. 2 : 486-492, 2015. https://doi.org/10.6109/jkiice.2015.19.2.486
  9. Y. G. Hwang, N. H. Lee, and S. M. Lee "The Study Image Aquisition System for Radiation Source Using the Stereo Gamma-ray Detector", Journal of The Institute of Electronics and Information Engineers, Vol. 52, No. 4, 2015.