DOI QR코드

DOI QR Code

Rheumatiod Arthritis: An Updated Overview of Latest Therapy and Drug Delivery

  • 투고 : 2019.05.12
  • 심사 : 2019.11.25
  • 발행 : 2019.12.31

초록

Rheumatoid arthritis is a severe autoimmune disorder, related to joints. It is associated with serious cartilage destruction. This causes disability and reduces the excellence of life. Numerous treatments are existed to combat this disease, however, they are not very efficient and possess severe side effects, higher doses, and frequent administration. Therefore, newer therapies are developed to overcome all these limitations. These include different monoclonal antibodies, immunoglobulins, small molecules used for immunotherapy and transgenes for gene therapy. One of the main goals of these new generation therapeutics is to address the underlying distressing biological processes by specifically targeting the causative agents with fewer systemic side effects and greater patient console. It is very fortuitous that loads of progressive investigations are going on in this field and many of them have entered into the successful clinical trial. But till date, a limited molecule has got FDA clearance and entered the market for treating this devastating disease. This review highlights the overview of conventional therapy and advancements in newer therapeutics including immunotherapy and gene therapy for rheumatoid arthritis. Further, different novel techniques for the delivery of these therapeutics of active and passive targeting are also described.

키워드

참고문헌

  1. Klareskog L, Padyukov L, Lorentzen J, Alfredsson, L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2(8):425-33. https://doi.org/10.1038/ncprheum0249
  2. Lawrence T, Natoli G. Transcriptional regulation of Macrophage polarization: Enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750-61. https://doi.org/10.1038/nri3088
  3. Firestein GS. Evolving Concepts of Rheumatoid Arthritis. Nature. 2003;423 (6937):356-61. https://doi.org/10.1038/nature01661
  4. Ferrari M, Onuoha SC, Pitzalis C. Going with the flow: harnessing the power of the vasculature for targeted therapy in rheumatoid arthritis. Drug Discovery Today. 2016;21(1):172-9. https://doi.org/10.1016/j.drudis.2015.10.014
  5. Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10:593-601. https://doi.org/10.1038/nrrheum.2014.80
  6. Koenders MI, Vandenberg WB. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol Sci. 2015;36:189-95. https://doi.org/10.1016/j.tips.2015.02.001
  7. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I. Arthritis Rheum. 2008;58:15-25. https://doi.org/10.1002/art.23177
  8. William DA, Lemke TE. Non-steroidal anti-inflammatory drug. Foye's Medicinal Chemistry. 5th ed. Philadelphia: Lippincott, Williams and Wilkins. 2006;751-93.
  9. Claria J. Cyclooxygenase-2 Biology. Current Pharmaceutical Design. 2003; 9(27):2177-90. https://doi.org/10.2174/1381612033454054
  10. Ribbens C, Andre B, Kaye O, Kaiser MJ, Bonnet V, de Groote D. Increased synovial fluid levels of interleukin-12, sCD25, and sTNF-RII/sTNF-RI ratio delineate a cytokine pattern characteristic of immune arthropathies. Eur Cytokine Netw. 2000;11(4): 669-76.
  11. Yang L, Zhang J, Wang G. The effect of sodium hyaluronate treating knee osteoarthritis on synovial fluid interleukin-$1{\beta}$ and clinical treatment mechanism. Pak J Pharm Sci. 2015;28(1):407-10.
  12. Moura CC, Segundo MA, Neves J, Reis S, Sarmento B. Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. Int J Nanomed. 2014;9:4911-22. https://doi.org/10.2147/IJN.S68440
  13. Mashaghi S, Jadidi T, Koenderink G, Mashaghi A. Lipid nanotechnology. Int J Mol Sci 2013;14: 4242-82. https://doi.org/10.3390/ijms14024242
  14. Sehgal R. Nanotechnology and its applications in drug delivery. A review. Int J Mol Med. 2013;3:267.
  15. Coco R, Plapied L, Pourcelle V, Jerome C, Brayden DJ, Schneider YJ, et al. Drug delivery to the inflamed colon by nanoparticles: Comparison of different strategies. Int J Pharm. 2013;440:3-12. https://doi.org/10.1016/j.ijpharm.2012.07.017
  16. Schnitzer TJ, Truitt KRF. The safety profile, tolerability, and effective dose range of rofecoxib in the treatment of rheumatoid arthritis. Clinical Therapeutics. 1999;21(10):1688-1702. https://doi.org/10.1016/s0149-2918(99)80048-4
  17. Krug HLK, Broadwell MB, Delapp R, Palmer RH, Mahowald M. Tolerability and efficacy of nabumetone and naproxen in the treatment of rheumatoid arthritis. Clinical Therapeutics. 2000;22(1):40-52. https://doi.org/10.1016/S0149-2918(00)87976-X
  18. Hoes JN, Jacobs JW, Buttgereit F, Bijlsma JW. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat Rev Rheumatol. 2010;6(12):693-702. https://doi.org/10.1038/nrrheum.2010.179
  19. Buttgereit F, Doering G, Schaeffler A. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. Ann Rheum Dis. 2010;69(7):1275-80. https://doi.org/10.1136/ard.2009.126888
  20. Smolen JS, Landewe R, Breedveld FC. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):964-75. https://doi.org/10.1136/ard.2009.126532
  21. McConkey B, Amos RS, Durham S, Forster PJ, Hubbell S, Walsh L. Sulphasalazine in rheumatoid arthritis. Br Med J. 1980;280:442-4. https://doi.org/10.1136/bmj.280.6212.442
  22. Verstappen SM, Albada-Kuipers GA, Bijlsma JW, et al. A good response to early DMARD treatment of patients with rheumatoid arthritis in the first year predicts remission during follow up. Ann Rheum Dis. 2005;64:38-43. https://doi.org/10.1136/ard.2003.014928
  23. Quan LD, Thiele GM, Tian J, Wang D. The development of novel therapies for rheumatoid arthritis. Expert Opinion on Therapeutic Patents. 2008;18(7): 723-38. https://doi.org/10.1517/13543776.18.7.723
  24. Michael EW. Methotrexate in Rheumatoid Arthritis: A Quarter Century of Development. Trans Am Clin Climatol Assoc. 2013;124:16-25.
  25. Maccagno A, Di Giorgio E, Romanowicz A. Effectiveness of etodolac ('Lodine') compared with naproxen in patients with acute gout. Current medical research and opinion. 1991;12(7): 423-9. https://doi.org/10.1185/03007999109111513
  26. Weaver A, Chatwell R, Churchill M, Kastanek L, Beyene J, Garceau R, et al. Improved gastrointestinal tolerance and patient preference of enteric-coated sulfasalazine versus uncoated sulfasalazine tablets in patients with rheumatoid arthritis. Journal of clinical rheumatology: practical reports on rheumatic & musculoskeletal diseases. 1999;5(4):193-200. https://doi.org/10.1097/00124743-199908000-00003
  27. Gaston G. A double-blind, randomized, parallel-group study of the pharmacokinetics and onset of action of Naprelan in patients following oral surgery. American journal of orthopedics (Belle Mead, NJ). 1996;25(9):37-41.
  28. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Indian Drugs. 2015; 75(8): 859-77.
  29. Peyman G.A. MINU LLC. Enhanced wound healing. U.S. Patent Application 12/144. 2008;182.
  30. Prakash A, Jarvis B. Leflunomide. Indian Drugs. 1999;58(6):1137-64. https://doi.org/10.2165/00003495-199958060-00010
  31. Graul AI. The year's new drugs. Drug News Perspect. 2003;16: 22-39.
  32. Sibbald B. Rofecoxib (Vioxx) voluntarily withdrawn from the market. Canadian Medical Association Journal. 2004;171(9): 1027-8. https://doi.org/10.1503/cmaj.1041606
  33. Miner JrP, Plachetka J, Orlemans E, Fort JG, Sostek M. Clinical trial: evaluation of gastric acid suppression with three doses of immediate-release esomeprazole in the fixed-dose combination of PN 400 (naproxen/esomeprazole magnesium) compared with naproxen 500 mg and enteric-coated esomeprazole 20 mg: a randomized, open-label, Phase I study in healthy volunteers. Alimentary pharmacology & therapeutics. 2010;32(3): 414-24. https://doi.org/10.1111/j.1365-2036.2010.04361.x
  34. Bello AE. $DUEXIS^{(R)}$(ibuprofen 800 mg, famotidine 26.6 mg: a new approach to gastroprotection for patients with chronic pain and inflammation who require treatment with a nonsteroidal anti-inflammatory drug. Therapeutic advances in musculoskeletal disease. 2012;4(5): 327-39. https://doi.org/10.1177/1759720X12444710
  35. Choy EH, Kingsley GH, Panayi GS. Anti-CD4 monoclonal antibodies in rheumatoid arthritis. Springer Semin Immunopathol. 1998;20:261-73. https://doi.org/10.1007/BF00832011
  36. St Clair WE, van der Heijde DM, Smolen JS. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: A randomized, controlled trial. Arthritis Rheum. 2004;50:3432-43. https://doi.org/10.1002/art.20568
  37. David SP. Advances in the Treatment of Rheumatoid ArthritisCosts and Challenges. North Carolina Medical Journal. 2017;78(5):337-40. https://doi.org/10.18043/ncm.78.5.337
  38. https://www.centerwatch.com/drug-information/fda-approved drugs/drug/737/enbrel-etanercept
  39. Tanaka T, Hishitani Y, Ogata A. Monoclonal antibodies in rheumatoid arthritis: comparative effectiveness of tocilizumab with tumor necrosis factor inhibitors. Biologics: targets & therapy. 2014;8:141. https://doi.org/10.2147/BTT.S37509
  40. Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. Journal of the American Society of Nephrology. 2002;13(2):559-75. https://doi.org/10.1681/ASN.V132559
  41. Ogale S, Hitraya E, Henk HJ. Patterns of biologic agent utilization among patients with rheumatoid arthritis: a retrospective cohort study. BMC musculoskeletal disorders. 2002;12(1):204. https://doi.org/10.1186/1471-2474-12-204
  42. Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-$1{\beta}$ monoclonal antibody. Clinical pharmacokinetics. 2012; 51(6):1-18. https://doi.org/10.2165/11596390-000000000-00000
  43. Khan MM. Monoclonal Antibodies as Therapeutic Agents. Immunopharmacology Springer. 2016;157-96.
  44. Campbell L, Chen C, Bhagat SS, Parker RA, Oster AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology. 2010;50(3):552-62. https://doi.org/10.1093/rheumatology/keq343
  45. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine & growth factor reviews. 2002;13(4-5): 413-21. https://doi.org/10.1016/S1359-6101(02)00026-6
  46. Robbins PD, Evans CH, Chernajovsky Y. Gene therapy for arthritis. Gene Therapy. 2003;10(10):902. https://doi.org/10.1038/sj.gt.3302040
  47. Evans CH, Mankin HJ, Robbins PD, Ghivizzani SC, Herndon JH, Kang R, et al. Clinical Trial to Assess the Safety, Feasibility, and Efficacy of Transferring a Potentially Anti-Arthritic Cytokine Gene to Human Joints with Rheumatoid Arthritis. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Human gene therapy. 1996;7(10):1261-80. https://doi.org/10.1089/hum.1996.7.10-1261
  48. Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes and immunity. 2002;3(3):170. https://doi.org/10.1038/sj/gene/6363867
  49. Kim JM, Jeong JG, Ho SH, Hahn W, Park EJ, Kim S, et al. Protection against collagen-induced arthritis by intramuscular gene therapy with an expression plasmid for the interleukin-1 receptor antagonist. Gene therapy. 2003;10(18): 1543. https://doi.org/10.1038/sj.gt.3302042
  50. Woods JM, Sitabkhan Y, Koch AE. Gene therapy for rheumatoid arthritis: recent advances. Current gene therapy. 2008;8(1):24-41. https://doi.org/10.2174/156652308783688482
  51. Campbell IK, Bendele A, Smith DA, Hamilton JA. Granulocyte-macrophage colony-stimulating factor exacerbates collagen-induced arthritis in mice. Annals of the rheumatic diseases. 1997;56(6):364-8. https://doi.org/10.1136/ard.56.6.364
  52. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature medicine. 1996;2(5): 551. https://doi.org/10.1038/nm0596-551
  53. Palmer G, Gabay C. Interleukin-33 biology with potential insights into human diseases. Nature Reviews Rheumatology. 2011;7(6):321. https://doi.org/10.1038/nrrheum.2011.53
  54. Wang H, Rickert M, Wieloch P, Lorenz H, Steck E, Richter W. Adenovirus-Mediated Gene Transfer of Human Growth and Differentiation Factor-5 (GDF-5) into the Healing Rat Achilles Tendon. Molecular Therapy. 2004;9(S1):S336.
  55. Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy and its tortuous path into the clinic. Translational Research. 2013;161(4): 205-16. https://doi.org/10.1016/j.trsl.2013.01.002
  56. Goyal A, Kumar S, Nagpal M, Singh I, Arora S. Potential of novel drug delivery systems for herbal drugs. Ind J Pharm Educ Res. 2011;45: 225-35.
  57. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2012;7(1): 50-7. https://doi.org/10.1021/nn301215q
  58. Albuquerque J, Moura CC, Sarmento B, Reis S. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules. 2015;20(6):11103-18. https://doi.org/10.3390/molecules200611103
  59. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2013;7(1): 50-7. https://doi.org/10.1021/nn301215q
  60. Satya PM, Padmaja NV, Nadiya S, Masthani S, Satya AK. A Review on Role of Nanoparticles in Rheumatoid arthritis therapy. Indian Journal of Research in Pharmacy and Biotechnology. 2016;4(6):255.
  61. Lee H, Lee MY, Bhang SH, Kim BS, Kim YS, Ju JH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8(5):4790-8. https://doi.org/10.1021/nn500685h
  62. Homma A, Sato H, Okamachi A, Emura T, Ishizawa T, Kato T, et al. Novel hyaluronic acid-methotrexate conjugates for osteoarthritis treatment. Bioorganic & medicinal chemistry. 2009;17(13):4647-56. https://doi.org/10.1016/j.bmc.2009.04.063
  63. Zheng Z, Sun Y, Liu Z, Zhang M, Li C, Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug design, development, and therapy. 2015;9:4931. https://doi.org/10.2147/DDDT.S90147
  64. Sailaja AK, Lola VS. Formulation of Mefenamic Acid Loaded Polymeric Nanoparticles for the Treatment of Rheumatoid Arthritis. Journal of Bionanoscience. 2018;12(2):177-83. https://doi.org/10.1166/jbns.2018.1525
  65. Zhou PH, Qiu B, Deng RH, Li HJ, Xu XF, Shang XF. Chondroprotective Effects of Hyaluronic Acid-Chitosan Nanoparticles Containing Plasmid DNA Encoding Cytokine Response Modifier A in a Rat Knee Osteoarthritis Model. Cellular Physiology and Biochemistry. 2018;47(3):1207-16. https://doi.org/10.1159/000490217
  66. Fan W, Li J, Yuan L, Chen J, Wang Z, Wang Y, G, et al. Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug delivery. 2018;25(1):1004-12. https://doi.org/10.1080/10717544.2018.1461279
  67. Ye J, Wang Q, Zhou X, Zhang N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. International journal of pharmaceutics. 2008;352(1-2): 273-9. https://doi.org/10.1016/j.ijpharm.2007.10.014
  68. Boechat AL, de Oliveira CP, Tarrago AM, da Costa AG, Malheiro A, Guterres SS, et al. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. International journal of nanomedicine. 2015;10:6603.
  69. Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug delivery. 2018;25(1):716-22. https://doi.org/10.1080/10717544.2018.1447050
  70. Metselaar JM, Van den Berg WB, Holthuysen AEM, Wauben MHM, Storm G, Van Lent PLEM. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Annals of the rheumatic diseases. 2004;63(4): 348-53. https://doi.org/10.1136/ard.2003.009944
  71. Thulasiramaraju TV, Babu AS, Arunachalam A, Prathap M, Srikanth S, Sivaiah P. Liposome: A novel drug delivery system. International Journal of Biopharmaceutics. 2012;3(1):5-16.
  72. Williams AS, Camilleri JP, Amos N, Williams BD. Differential effects of methotrexate and liposomally conjugated methotrexate in rat adjuvant-induced arthritis. Clinical & Experimental Immunology. 1995;102(3):560-5. https://doi.org/10.1111/j.1365-2249.1995.tb03853.x
  73. Metselaar J, Wauben MH, Wagenaar-Hilbers J, Boerman OC, Storm G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis & Rheumatology. 2003;48(7):2059-66. https://doi.org/10.1002/art.11140
  74. Prabhu P, Shetty R, Koland M, Vijayanarayana K, Vijay-alakshmi KK, Nairy MH, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. International journal of nanomedicine. 2012;7:177. https://doi.org/10.2217/nnm.12.8
  75. Gottschalk O, Metz P, Dao Trong ML, Altenberger S, Jansson V, Mutschler W, et al. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scandinavian journal of rheumatology. 2015; 44(6):456-63. https://doi.org/10.3109/03009742.2015.1030448
  76. Rahman M, Akhter S, Ahmad J, Ahmad MZ, Beg S, Ahmad FJ. Nanomedicine-based drug targeting for psoriasis: potentials and emerging trends in nanoscale pharmacotherapy. Expert opinion on drug delivery. 2015; 12(4):635-52. https://doi.org/10.1517/17425247.2015.982088
  77. Jia M, Deng C, Luo J, Zhang P, Sun X., Zhang Z, et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. International journal of pharmaceutics. 2018;540(1-2):57-64. https://doi.org/10.1016/j.ijpharm.2018.02.001
  78. Tan C, Wang Y, Fan W. Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics. 2013; 5(1): 201-19. https://doi.org/10.3390/pharmaceutics5010201
  79. Ho KS, Shoichet MS. Design considerations of polymeric nanoparticle micelles for chemotherapeutic delivery. Current Opinion in Chemical Engineering. 2013;2(1):53-9. https://doi.org/10.1016/j.coche.2013.01.003
  80. Crielaard BJ, Rijcken C, Quan L, Van Der Wal S, Altintas I, Van Der Pot M, et al. Glucocorticoid-Loaded Core-Cross-Linked Polymeric Micelles with Tailorable Release Kinetics for Targeted Therapy of Rheumatoid Arthritis. Angewandte Chemie International Edition. 2012;51(29):254-8. https://doi.org/10.1002/anie.201105717
  81. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel, biocompatible, and disease-modifying VIP nanomedicine for rheumatoid arthritis. Molecular Pharmaceutics. 2013,10(2),728-38. https://doi.org/10.1021/mp300539f
  82. Mason TG, Wilking JN, Meleson K, Chan CB, Graves SM. Nanoemulsions : formation, structure, and physical properties. J Phys: Condens Matter. 2006; 18:R635-R666. https://doi.org/10.1088/0953-8984/18/41/R01
  83. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development, and applications in drug delivery. Journal of Controlled Release. 2017;252: 28-49. https://doi.org/10.1016/j.jconrel.2017.03.008
  84. Pey CM, Maestro A, Sole I, Gonzalez C, Solans C, Gutierrez JM, et al. Optimization of nano-emulsions prepared by low-energy emulsification methods at a constant temperature using a factorial design study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006;288(1-3): 144-50. https://doi.org/10.1016/j.colsurfa.2006.02.026
  85. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. Journal of drug targeting. 2008;16(10): 733-40. https://doi.org/10.1080/10611860802473402
  86. Mello SB, Tavares ER, Guido MC, Bonfa E, Maranhao RC. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis. Clinics. 2016;71(1):54-8. https://doi.org/10.6061/clinics/2016(01)09
  87. Modi JD, Patel JK. Nanoemulsion-based gel formulation of aceclofenac for topical delivery. International Journal of Pharmacy and Pharmaceutical Science Re-search. 2011;1(1): 6-12.
  88. Wani TU, Rashid M, Kumar M, Chaudhary S, Kumar P, Mishra N. Targeting Aspects of Nanogels: An Overview. International Journal of Pharmaceutical Sciences and Nanotechnology. 2014;7(4): 2612-30. https://doi.org/10.37285/ijpsn.2014.7.4.3
  89. Chen W, Zheng M, Men F, Cheng R., Deng C, Feijen J, et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered the intracellular release of proteins. Biomacromolecules. 2013;14(4):1214-22. https://doi.org/10.1021/bm400206m
  90. Samah NA, Williams N, Heard CM. Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across the skin. International journal of pharmaceutics. 2010;401(1-2): 72-8. https://doi.org/10.1016/j.ijpharm.2010.08.011
  91. Nagai N, Yoshioka C, Ito Y. Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat. Journal of oleo science. 2015;64(3): 337-46. https://doi.org/10.5650/jos.ess14170
  92. Khurana S, Bedi PMS, Jain NK. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chemistry and physics of lipids. 2013;175: 65-72. https://doi.org/10.1016/j.chemphyslip.2013.07.010
  93. Elkomy MH, El Menshawe SF, Eid HM, Ali AM. Development of a nanogel formulation for transdermal delivery of tenoxicam: a pharmacokinetic-pharmacodynamic modeling approach for quantitative prediction of skin absorption. Drug development and industrial pharmacy. 2017;43(4): 531-44. https://doi.org/10.1080/03639045.2016.1268153