DOI QR코드

DOI QR Code

Relationship between Measured and Predicted Soil Water Content using Soil Moisture Monitoring Network

토양수분관측망을 활용한 토양수분의 실측값과 추정값 상관성 평가

  • Ok, Jung-hun (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Dong-Jin (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Han, Kyung-hwa (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jung, Kang-Ho (Divison of Planning and Coordination, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Kyung-Do (Divison of Climate Change and Agroecology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Zhang, Yong-seon (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Cho, Hee-rae (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hwang, Seon-ah (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
  • 옥정훈 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 김동진 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 한경화 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 정강호 (농촌진흥청 국립농업과학원 기획조정과) ;
  • 이경도 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 장용선 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 조희래 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 황선아 (농촌진흥청 국립농업과학원 토양비료과)
  • Received : 2019.10.22
  • Accepted : 2019.11.29
  • Published : 2019.12.30

Abstract

Soil moisture monitoring is an important task to cope with climate change, and soil water prediction can provide large-scale soil moisture information. Therefore, this study was conducted to evaluate the relationship between the measured and predicted soil water content, and to estimate the correlation between the soil characteristics and soil water content. The selected sites in soil moisture monitoring network were 76, and the soil with high sand content (sand, loamy sand, and sandy loam in soil texture) accounted for 77% of the total. Organic matter and bulk density were 0.03 to 3.50% and 1.01 to 1.69 Mg m-3, respectively. Predicting values of field capacity and wilting point were lower than the measured soil water content, and the correlation coefficient between the measured and predicted values were low as 0.548 to 0.748. However, a significantly high positive correlation (p<0.01) found between the measured and predicted soil water content. Soil water (field water capacity and wilting point) content was highly positively correlated with silt, clay, and organic matter (p<0.01) and highly negatively correlated with sand (p<0.01).

기후변화 대응을 위한 토양수분 관리는 중요한 과제이며, 최적의 토양수분 함량을 예측할 수 있다면 대단위 토양수분 정보를 제공할 수 있다. 본 연구에서는 포장용수량 및 위조점의 실측값과 추정값에 대한 상관 관계를 분석하였으며, 토양특성 인자와 토양수분 간 상관성을 조사하였다. 선정된 토양수분관측망 지점은 76 개이며, 모래함량이 높은 사토, 양질사토, 사양토가 77%를 차지하였으며, 유기물은 0.03~3.50%, 용적밀도는 1.01~1.69 Mg m-3 범위로 조사되었다. 포장용수량 및 위조점의 추정값은 실측값과 상관계수가 낮고 실측값보다 과소 평가되었으나 추정값과 실측값 간에는 고도로 유의한 정의상관관계(p<0.01)가 나타났다. 토양수분(포장용수량 및 위조점)은 미사, 점토, 유기물과는 고도로 유의한 정의상관(p<0.01)이었으며, 모래와는 고도로 유의한 부의상관(p<0.01)이었다. 하지만 본 연구에서 조사된 토양수분관측망 토양은 농업기상대 설치를 위하여 인위적으로 조성된 지점이 포함되어 있어 일반농경지 토양 특성을 그대로 반영하기 다소 어려움이 있다. 따라서 토양수분 측정 조사지점을 농경지까지 포함하여 표본수를 확대하고 토양 인자를 적절하게 활용할 경우 국내 실정에 맞는 토양수분 추정식을 도출할 수 있을 것으로 기대된다.

Keywords

References

  1. Agassi, M., D. Bloem, and M. Ben-Hur, 1994: Effect of drop energy and soil and water chemistry on infiltration and erosion. Water Resource Research 30(4), 1187-1193. https://doi.org/10.1029/93WR02880
  2. Assouline, S., 2006: Modeling the relationship between soil bulk density and the hydraulic conductivity function. Vadose Zone Journal 5(2), 697-705. https://doi.org/10.2136/vzj2005.0084
  3. Blake, G. R., and K. H. Hartge, 1986: Bulk density. Methods of soil analysis. Part 1. (2nd edition), A. Klute (Ed.), American Society of Agronomy, Madison, WI, USA, 363-375.
  4. Cho, H. R., K. H. Han, Y. S. Zhang, K. H. Jung, Y. K. Sonn, M. S. Kim, and S. E. Choi, 2016: Threshold subsoil bulk density for optimal soil physical quality in upland: Inferred through parameter interactions and crop growth inhibition. Korean Journal of Soil Science and Fertilizer 49(5), 548-554. https://doi.org/10.7745/KJSSF.2016.49.5.548
  5. Cho, H. R., Y. S. Zhang, K. H. Han, J. H. Ok, S. A. Hwang, H. S. Lee, and D. J. Kim, 2018: Decadal changes in subsoil physical properties as affected by agricultural land use types in Korea. Korean Journal of Environmental Biology 36(4), 567-575. https://doi.org/10.11626/KJEB.2018.36.4.567
  6. Durner, W., 1994: Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resource Research 30(2), 211-223. https://doi.org/10.1029/93WR02676
  7. Gee, G. W., and J. W. Bauder, 1986: Particle size analysis. Method of soil analysis. Part 1. (2nd edition), A. Klute (Ed.), American Society of Agronomy, Madison, WI, USA, 383-411.
  8. Grewal, K. S., G. D. Buchan, and P. J. Tonkin, 1990: Estimating of field capacity and wilting point of some New Zealand soils from their saturation percentage. New Zealand Journal of Crop and Horticultural Science 18, 241-246. https://doi.org/10.1080/01140671.1990.10428101
  9. Gupta, S. C., and W. E. Larson, 1979: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research 15(6), 1633-1635. https://doi.org/10.1029/WR015i006p01633
  10. Hanjra, M. A., and M. E. Qureshi, 2010: Global water crisis and future food security in an era of climate change. Food Policy 35, 365-377. https://doi.org/10.1016/j.foodpol.2010.05.006
  11. Hur, S. O., Y. G. Sonn, B. K. Hyun, K. S. Shin, T. K. Oh, and J. G. Kim, 2014: Verification on PTE (Pedo-Transfer Function) estimating soil water retention based on soil properties. CNU Journal of Agricultural Science 41(4), 393-400.
  12. Jung, Y. S., H. D. Sa, S. Kang, S. B. Oh, and J. S. Lee, 2015: Soil water characteristic curve using volumetric pressure plate extractor incorporated with TDR system. Journal of the Korean Geotechnical Society 31(8), 17-28. https://doi.org/10.7843/kgs.2015.31.8.17
  13. Kim, D. J., K. H. Han, Y. S. Zhang, H. R. Cho, S. A. Hwang, J. H. Ok, K. S. Choi, and J. S. Choi, 2018: Evaluation of evapotranspiration in different paddy soils using weighable lysimeter before flooding stage. Korean Journal of Soil Science and Fertilizer 51(4), 510-521. https://doi.org/10.7745/KJSSF.2018.51.4.510
  14. Maynard, A. A., 2000: Compost: The process and research. Bulletin-Connecticut Agricultural Experiment Station No 966. Conecticut Agricultural Experiment Station, New Haven, CT.
  15. Minasny, B., and A. B. McBratney, 2018: Limited effect of organic matter on soil available water capacity. European Journal of Soil Science 69, 39-47. https://doi.org/10.1111/ejss.12475
  16. MOLIT, 2011: Water resource long-term plan (2011-2020). Ministry of Land, Infrastructure and Transport, Gwacheon, Korea.
  17. NAAS, 2010: Methods of soil chemical analysis. National Academy of Agricultural Sciences, RDA, Suwon, Korea, 51-60.
  18. NIAS, 2017: Methods of soil physical analysis. National Institute of Agricultural Sciences, RDA, Wanju, Korea, 53-57.
  19. Ok, J. H., K. H. Han, Y. J. Lee, Y. S. Zhang, H. R. Cho, S. A. Hwang, S. S. Kim, J. H. Lee, and D. J. Kim, 2018: Water balance for Chinese cabbage in spring season with different upland soils evaluated using weighable lysimeters. Korean Journal of Soil Science and Fertilizer 51(4), 555-563. https://doi.org/10.7745/KJSSF.2018.51.4.555
  20. Oliveira, L. B., M. R. Riveiro, P. K. T. Jacomine, J. J. V. Rodrigues, and F. A. Marques, 2002: Funcoes de pedotransferencia para predicao da umidade retida a potenciais específicos em solos do Estado de Pernambuco. Revista Brasileira de Ciencia do Solo 26(26), 315-323 (in Brazilian with English abstract). https://doi.org/10.1590/S0100-06832002000200004
  21. Rawls, W. J., D. L. Brakensiek, and K. E. Saxton, 1982: Estimation of soil water properties. Transactions of the American Society Agricultural Engineers 25(5), 1316-1320. https://doi.org/10.13031/2013.33720
  22. Reichert, J. M., J. A. Albuquerque, D. R. Kaiser, D. J. Reinert, F. L. Urach, and R. Carlesso, 2009. Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciencia do Solo 33, 1547-1560. https://doi.org/10.1590/S0100-06832009000600004
  23. Saccon, P., 2018: Water for agriculture, irrigation management. Applied Soil Ecology 123, 793-796. https://doi.org/10.1016/j.apsoil.2017.10.037
  24. Seo, M. C., S. O. Hur, Y. K. Sonn, H. S. Cho, W. T. Jeon, M. K. Kim, and M. T. Kim, 2012: The development of estimation model (AFKAE0.5) for water balance and soil water content using daily weather data. Korean Journal of Soil Science and Fertilizer 45(6), 1203-1210. https://doi.org/10.7745/KJSSF.2012.45.6.1203
  25. Seo, M. J., K. H. Han, H. R. Cho, J. H. Ok, Y. S. Zhang, Y. H. Seo, K. H. Jung, H. S. Lee, and G. S. Kim, 2017: Interpreting in situ soil water characteristics curve under different paddy soil types using undisturbed lysimeter with soil sensor. Korean Journal of Soil Science and Fertilizer 50(5), 336-344. https://doi.org/10.7745/KJSSF.2017.50.5.336
  26. Wang, L., and J. J. Qu, 2009: Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China 3(2), 237-247. https://doi.org/10.1007/s11707-009-0023-7