DOI QR코드

DOI QR Code

Occurrence of Fusarium Species in Korean Sorghum Grains

국내 수수 알곡에서의 Fusarium속 균의 발생현황

  • Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Nah, Ju-Young (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jin, Hyun-Suk (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lim, Su-Bin (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Paek, Ji-Seon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Mi-Jeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Ja-Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Sung Kee (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Hyo-Won (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
  • 최정혜 (국립농업과학원 유해생물팀) ;
  • 나주영 (국립농업과학원 유해생물팀) ;
  • 진현숙 (국립농업과학원 유해생물팀) ;
  • 임수빈 (국립농업과학원 유해생물팀) ;
  • 백지선 (국립농업과학원 유해생물팀) ;
  • 이미정 (국립농업과학원 유해생물팀) ;
  • 장자영 (국립농업과학원 유해생물팀) ;
  • 이데레사 (국립농업과학원 유해생물팀) ;
  • 홍성기 (국립농업과학원 작물보호과) ;
  • 최효원 (국립농업과학원 작물보호과) ;
  • 김점순 (국립농업과학원 유해생물팀)
  • Received : 2019.11.27
  • Accepted : 2019.12.11
  • Published : 2019.12.31

Abstract

A total of 1,159 Fusarium strains were isolated from sorghum grown in Danyang and Youngwol in 2017 and 2018. The isolates were analyzed to reveal genetic, toxigenic and pathogenic characteristics. Phylogenetic analysis using TEF-1α and RPB2 genes showed that the samples were contaminated with at least 17 Fusarium species. Among them, F. graminearum, F. proliferatum, F. thapsinum, F. incarnatum, and F. asiaticum were dominant species. In F. graminearum and F. asiaticum, F. graminearum-15-acetyl deoxynivalenol chemotype and F. asiaticum-nivalenol chemotype were frequent. Six Fusarium species tested produced one or more mycotoxins, except F. thapsinum and FTSC 11. F. proliferatum and F. fujikuroi had FUM1 gene (76.0% and 81.6%, respectively) and some isolates produced high level of fumonisin (over 1,000 ㎍). F. proliferatum and F. thapsinum were more virulent than other species on sorghum. These results indicate that Fusarium species in sorghum might produce multiple mycotoxins.

2017년, 2018년에 단양과 영월에서 재배된 수수에서 1,159점의 Fusarium 균주를 분리하여 유전적, 독성학적, 병리학적 특성을 규명하였다. TEF-1α와 RPB2 유전자를 이용한 계통수 분석결과 수수는 17종의 Fusarium 종들로 오염되었으며, 이 중 F. graminearum, F. proliferatum, F. thapsinum, F. incarnatum, F. asiaticum 등이 주요 우점종이었다. F. graminearum과 F. asiaticum 중에는 F. graminearum-15-acetyl deoxynivalenol 화학형과 F. asiaticum-nivalenol 화학형 균들이 우점하였다. F. thapsinum과 FTSC 11을 제외한 6개의 Fusarium 종이 하나 이상의 독소를 생성하였다. F. proliferatum과 F. fujikuroi 균주 들 중 각각 76.0%와 81.6%가 FUM1 유전자를 가지고 있으며, 일부 균주는 고농도(1,000 ㎍ 이상)의 푸모니신을 생성하였다. F. proliferatum과 F. thapsinum이 다른 종에 비해 높은 수수 병원성을 나타내었다. 이러한 결과는 수수의 Fusarium종들이 여러 종의 독소를 생성할 수 있다는 것을 시사한다.

Keywords

References

  1. An, T. J., Shin, K. S., Paul, N. C., Kim, Y. G., Cha, S. W., Moon, Y. et al. 2016. Prevalence, characterization, and mycotoxin production ability of Fusarium species on Korean adlay (Coix lacrymal-jobi L.) seeds. Toxins 8: 310. https://doi.org/10.3390/toxins8110310
  2. Aoyama, K., Ishikuro, E., Nishiwaki, M. and Ichinoe, M. 2009. Zearalenone contamination and the causative fungi in sorghum. J. Food Hyg. Soc. Jpn. 50: 47-51. https://doi.org/10.3358/shokueishi.50.47
  3. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  4. Choi, H.-W., Hong, S. K., Lee, Y. K. and Kim, W. G. 2013. Diversity and pathogenicity of Fusarium species associated with grain mold of sorghum. Korean J. Mycol. 41: 142-148. (In Korean) https://doi.org/10.4489/KJM.2013.41.3.142
  5. Choi, J.-H., Lee, S., Nah, J.-Y., Kim, H.-K., Paek, J.-S., Lee, S. et al. 2018. Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int. J. Food Microbiol. 267: 62-69. https://doi.org/10.1016/j.ijfoodmicro.2017.12.006
  6. Erpelding, J. E. and Prom, L. K. 2006. Seed mycoflora for grain mold from natural infection in sorghum germplasm grown at Isabela, Puerto Rico and their association with kernel weight and germination. Plant Pathol. J. 5: 106-112. https://doi.org/10.3923/ppj.2006.106.112
  7. Jang, J. Y., Kim, S., Jin, H. S., Baek, S. G., O, S., Kim, K. et al. 2018. Occurrence of toxigenic Fusarium spp. and zearalenone in scabby rice grains and healthy ones. Res. Plant. Dis. 24: 308-312. (In Korean) https://doi.org/10.5423/RPD.2018.24.4.308
  8. Jeon, Y.-A., Yu, S.-H., Lee, Y. Y., Park, H.-J., Lee, S., Sung, J. S. et al. 2013. Incidence, molecular characteristics and pathogenicity of Gibberella fujikuroi species complex associated with rice seeds from Asian countries. Mycobiology 41: 225-233. https://doi.org/10.5941/MYCO.2013.41.4.225
  9. Kosiak, E. B,, Holst-Jensen, A., Rundberget, T., Jaen, M. T. G. and Torp, M. 2005. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. Int. J. Food Microbiol. 99: 195-206. https://doi.org/10.1016/j.ijfoodmicro.2004.08.015
  10. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  11. Lee, S.-H., Lee, J., Nam, Y. J., Lee, S., Ryu, J.-G. and Lee, T. 2010. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. J. 26: 321-327. https://doi.org/10.5423/PPJ.2010.26.4.321
  12. Lehotay, S. J., Mastovská, K. and Lightfield, A. R. 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 88: 615-629. https://doi.org/10.1093/jaoac/88.2.615
  13. Leslie, J. F., Zeller, K. A., Lamprecht, S. C., Rheeder, J. P. and Marasas, W. F. O. 2005. Toxicity, pathogenicity, and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 95: 275-283. https://doi.org/10.1094/PHYTO-95-0275
  14. Little, C. R. and Magill, C. W. 2009. The grain mold pathogen, Fusarium thapsinum, reduces caryopsis formation in Sorghum bicolor. J. Phytopathol. 157: 518-519. https://doi.org/10.1111/j.1439-0434.2008.01530.x
  15. Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  16. Melake-Berhan, A., Butler, L. G., Ejeta, G. and Menkir, A. 1996. Grain mold resistance and polyphenol accumulation in sorghum. J. Agric. Food Chem. 44: 2428-2434. https://doi.org/10.1021/jf950580x
  17. O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95: 2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  18. Proctor, R. H., Plattner, R. D., Brown, D. W., Seo, J. A. and Lee, Y. W. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108: 815-822. https://doi.org/10.1017/S0953756204000577
  19. Rural Development Administration. 2018. Handbook to Agricultural Technology 196: Sorghum. Rural Development Administration, Jeonju, Korea. 8 pp. (In Korean)
  20. Sharma, R., Thakur, R. P., Senthilvel, S., Nayak, S., Reddy, S. V., Rao, V. P. et al. 2011. Identification and characterization of toxigenic Fusaria associated with sorghum grain mold complex in India. Mycopathologia 171: 223-230. https://doi.org/10.1007/s11046-010-9354-x
  21. Shotwell, O. L., Bennett, G. A., Goulden, M. L., Plattner, R. D. and Hesseltine, C. W. 1980. Survey for zearalenone, aflatoxin and ochratoxin in U.S. grain sorghum from 1975 and 1976 crops. J. Assoc. Off. Anal. Chem. 63: 922-926.
  22. Thakur, R. P., Rao, V. P., Navi, S. S., Garud, T. B., Agarkar, G. D. and Bhat, B. 2003. Sorghum grain mold: variability in fungal complex. Int. Sorghum Millets Newsl. 2003: 104-108.
  23. van der Lee, T., Zhang, H., Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32: 453-460. https://doi.org/10.1080/19440049.2014.984244
  24. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O'Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. U. S. A. 99: 9278-9283. https://doi.org/10.1073/pnas.142307199
  25. Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S. et al. 2010. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 100: 328-336. https://doi.org/10.1094/PHYTO-100-4-0328