DOI QR코드

DOI QR Code

Rice Blast Populations Isolated from the Border Area of North Korea

북한 접경지역의 벼 도열병균 레이스 분포

  • Chung, Hyunjung (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Roh, Jae-Hwan (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Yang, Jung-Wook (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shim, Hyeong-Kwon (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Da Gyeong (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Joo Yeon (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Jin Young (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, In Jeong (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Heu, Sunggi (Crop Cultivation & Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 정현정 (국립식량과학원 중부작물부 재배환경과) ;
  • 노재환 (국립식량과학원 바이오에너지작물연구소) ;
  • 양정욱 (국립식량과학원 중부작물부 재배환경과) ;
  • 심형권 (국립식량과학원 중부작물부 재배환경과) ;
  • 정다경 (국립식량과학원 중부작물부 재배환경과) ;
  • 김주연 (국립식량과학원 중부작물부 재배환경과) ;
  • 신진영 (국립식량과학원 중부작물부 재배환경과) ;
  • 강인정 (국립식량과학원 중부작물부 재배환경과) ;
  • 허성기 (국립식량과학원 중부작물부 재배환경과)
  • Received : 2019.10.30
  • Accepted : 2019.12.07
  • Published : 2019.12.31

Abstract

Rice blast disease caused by Magnaporthe oryzae is the most important disease of rice in both South and North Korea. Cultivation of disease-resistant cultivar is the best way to prevent this notorious disease, but M. oryzae races have been continuously changed to adapt a new cultivar. Therefore, it is important to get the information about the race and avirulence genes of the pathogen for developing blast-resistant rice cultivar. Since the entrance of North Korea was prohibited, the information about the races of M. oryzae in North Korea border areas and South Korea was collected to get the information about the diversity of rice blast pathogen in North Korea. The disease occurrence on monogenic lines carrying single resistant gene was investigated in Jeonju, Suwon, Cheorwon, Goseong, and Baengnyeongdo in Korea, and Dandong in China. The monogenic lines in Jeonju and Suwon showed diverse ranges of the response, while those in Baengnyeongdo and Dandong showed relatively high resistant responses to rice blast. All the field isolates of M. oryzae were characterized for rice blast races by the Korean differential varieties and screened for known avirulence genes to determine the spatial distribution of avirulence genes and the population of M. oryzae.

벼 도열병은 벼를 재배하는 지역에서 가장 중요한 병으로, 벼의 전 생육기에 감염하여 큰 수확량 손실을 초래한다. 우리나라에서는 벼 도열병 방제를 위하여 지속적으로 레이스를 확인하고 저항성 벼 품종을 육성하는 노력을 하고 있다. 북한에서도 벼 도열병은 가장 문제가 되는 곰팡이 병이지만 북한에서 발생하는 도열병균의 레이스 분포를 직접적으로 알기란 매우 어렵다. 본 연구에서는 북한 접경지역에서 도열병 발생 분포를 알아보고 도열병균의 레이스 다양성과 비병원성 유전자 유무를 확인하였다. 단일 저항성 유전자를 도입한 단인자 저항성 계통을 이용하여 남한 내륙지역과 북한 접경지역에서 밭못자리 시험을 수행하였다. 남한 내륙지역인 전주와 수원에서는 도열병균이 단인자 저항성 계통에 다양한 병 반응을 일으킨 데에 반해, 북한 접경지역인 백령도와 중국 단둥에서는 비교적 단순한 병 반응을 보이며 높은 저항성을 보였다. 각 지역에서 분리한 도열병균에 대해 수행한 레이스 판별 결과, 남한 내륙지역과 북한 접경지역의 KI 레이스와 KJ 레이스 비율은 상반되게 나타났으며 남한 내륙지역이 북한 접경지역보다 다양한 레이스 분포를 보였다. 한편, 북한 접경지역에서는 남한 내륙지역에서 발견되지 않은 8개 레이스가 나타나 이에 대한 저항성 품종 육종 대비도 필요하다고 판단된다. 각 지역별로 분리한 대부분 균주에서는 Avr-Pii와 Avr-Pia를 제외한 9개 비병원성 유전자가 확인되었다. 이는 분리균주가 가지고 있는 비병원성 유전자에 변이로 인하여 병원성이 달라졌다고 판단되며, 추후 비병원성 유전자들에 대한 염기서열 분석과 각 균주에 대한 단인자 저항성 계통의 병 반응을 비교 분석함으로써 각 지역에 유효한 저항성 인자를 찾을 수 있을 것이다.

Keywords

References

  1. Bandong, J. M. and Ou, S. H. 1966. The physiological races of Pyricularia oryzae Cav. in the Philippines. Philipp. Agric. 49: 655-667.
  2. Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M. et al. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7: e1002147. https://doi.org/10.1371/journal.ppat.1002147
  3. Chung, H., Kang, I. J., Yang, J.-W., Roh, J.-H., Shim, H.-K. and Heu, S. 2019. Evaluation of disease resistance of rice cultivar developed in North Korea. Res. Plant Dis. 25: 108-113. (In Korean) https://doi.org/10.5423/RPD.2019.25.3.108
  4. Goh, J., Kim, B.-R., Lee, S.-W., Roh, J.-H., Shin, D.-B., Jeung, J.-U. et al. 2013. Selection of representative Magnaporthe oryzae isolates and rice resistant gene types for screening of blast-resistant rice cultivar. Res. Plant Dis. 19: 243-253. (In Korean) https://doi.org/10.5423/RPD.2013.19.4.243
  5. Han, S. S. 1995. Transition of rice blast fungus (Pyricularia grisea) races in relation to differential varieties in Korea. Plant Dis. Agric. 1: 9-17. (In Korean)
  6. Han, S.-S., Ryu, J. D., Shim, H.-S., Lee, S.-W., Hong, Y.-K. and Cha K.-H. 2001. Breakdown of resistant cultivars by new race KI-1117a and race distribution of rice blast fungus during 1999-2000 in Korea. Res. Plant Dis. 7: 86-92. (In Korean)
  7. Huang, J., Si, W., Deng, Q., Li, P. and Yang, S. 2014. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet. 15: 45. https://doi.org/10.1186/1471-2156-15-45
  8. International Rice Research Institute. 1988. Standard Evaluation System for Rice. 3rd ed. International Rice Research Institute, Los Bannos, Philippines. 54 pp.
  9. Kim, Y., Go, J., Kang, I. J., Shim, H.-K., Shin, D. B., Heu, S. et al. 2016. Distribution of rice blast disease and pathotype analysis in 2014 and 2015 in Korea. Res. Plant Dis. 22: 264-268. (In Korea) https://doi.org/10.5423/RPD.2016.22.4.264
  10. Kim, Y., Kang, I. J., Shim, H.-K. and Roh, J.-H. 2017. Pathotype classification of Korean rice blast isolates using monogenic lines for rice blast resistance. Res. Plant Dis. 23: 249-255. (In Korean) https://doi.org/10.5423/RPD.2017.23.3.249
  11. Lee, E. J., Ryu, J. D., Yeh, W. H., Han, S. S. and Lee, Y. H. 1987. Proposal of a new method for differentiating pathogenic races of Pyricularia oryzae Cavara in Korea. Res. Rep. RDA (PM & U) 29: 206-213. (In Korean)
  12. Li, Y. B., Wu, C. J., Jiang, G. H., Wang, L. Q. and He Y. Q. 2007. Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breed. 126: 541-547. https://doi.org/10.1111/j.1439-0523.2007.01409.x
  13. Longya, A., Chaipanya, C., Franceschetti, M., Maidment, J., Banfield, M. J. and Jantasuriyarat, C. 2019. Gene duplication and mutation in the emergence of a novel aggressive allele of the AVRPiK effector in the rice blast fungus. Mol. Plant Microbe Interact. 32: 740-749. https://doi.org/10.1094/MPMI-09-18-0245-R
  14. Oh, I.-S., Min, J.-Y., Cho, M.-G., Roh, J.-H., Shin, D.-B., Song, J. et al. 2008. Rice blast control and race diversity by mixed-planting of two cultivars ('Hopyeongbyeo'/'Nampyeongbyeo') with different susceptibility to Magnaporthe oryzae. Res. Plant Dis. 14: 143-152. https://doi.org/10.5423/RPD.2008.14.3.143
  15. Selisana, S. M., Yanoria, M. J., Quime, B., Chaipanya, C., Lu, G., Opulencia, R. et al. 2017. Avirulence (AVR) Gene-based diagnosis complements existing pathogen surveillance tools for effective deployment of resistance (R) genes against rice blast disease. Phytopathology 107: 711-720. https://doi.org/10.1094/PHYTO-12-16-0451-R
  16. Shi, N.-N., Ruan, H.-C., Liu, X.-Z., Yang, X.-J., Dai, Y.-L., Gan, L. et al. 2018. Virulence structure of Magnaporthe oryzae populations from Fujian province, China. Can. J. Plant Pathol. 40: 542-550. https://doi.org/10.1080/07060661.2018.1504821
  17. Thon, M. R., Pan, H., Diener, S., Papalas, J., Taro, A., Mitchell, T. K. et al. 2006. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol. 7: R16. https://doi.org/10.1186/gb-2006-7-2-r16
  18. Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H. et al. 2000. Development of monogenic lines of rices for blast resistance. Breed. Sci. 50: 229-234. https://doi.org/10.1270/jsbbs.50.229
  19. Wang, B.-H., Ebbole, D. J. and Wang Z.-H. 2017. The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J. Integr. Agric. 16: 2746-2760. https://doi.org/10.1016/S2095-3119(17)61746-5
  20. Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X. et al. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206: 1463-1475. https://doi.org/10.1111/nph.13310
  21. Zhou, E., Jia, Y., Singh, P., Correll, J. C. and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol. 44: 1024-1034. https://doi.org/10.1016/j.fgb.2007.02.003