DOI QR코드

DOI QR Code

MBCAST: A Forecast Model for Marssonina Blotch of Apple in Korea

  • Kim, Hyo-suk (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jo, Jung-hee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kang, Wee Soo (Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Do, Yun Su (Research Policy Bureau, Rural Development Administration) ;
  • Lee, Dong Hyuk (Apple Research Institute, National Institute of Horticultural & Herbal Science) ;
  • Ahn, Mun-Il (EPINET Corporation) ;
  • Park, Joo Hyeon (EPINET Corporation) ;
  • Park, Eun Woo (Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2019.09.05
  • Accepted : 2019.09.19
  • Published : 2019.12.01

Abstract

A disease forecast model for Marssonina blotch of apple was developed based on field observations on airborne spore catches, weather conditions, and disease incidence in 2013 and 2015. The model consisted of the airborne spore model (ASM) and the daily infection rate model (IRM). It was found that more than 80% of airborne spore catches for the experiment period was made during the spore liberation period (SLP), which is the period of days of a rain event plus the following 2 days. Of 13 rain-related weather variables, number of rainy days with rainfall ≥ 0.5 mm per day (Lday), maximum hourly rainfall (Pmax) and average daily maximum wind speed (Wavg) during a rain event were most appropriate in describing variations in airborne spore catches during SLP (Si) in 2013. The ASM, Ŝi = 30.280+5.860×Lday×Pmax-2.123×Lday×Pmax×Wavg was statistically significant and capable of predicting the amount of airborne spore catches during SLP in 2015. Assuming that airborne conidia liberated during SLP cause leaf infections resulting in symptom appearance after 21 days of incubation period, there was highly significant correlation between the estimated amount of airborne spore catches (Ŝi) and the daily infection rate (Ri). The IRM, ${\hat{R}}_i$ = 0.039+0.041×Ŝi, was statistically significant but was not able to predict the daily infection rate in 2015. No weather variables showed statistical significance in explaining variations of the daily infection rate in 2013.

Keywords

References

  1. Allen, M. P. 1997. Understanding regression analysis. Plenum Press, New York, NY, USA. 216 pp.
  2. Anil, K. and Sharma, J. N. 2013. Effect of abiotic factors on Marssonina blotch causing premature leaf fall in apple (Malus domestica). Indian Phytopathol. 66:278-283.
  3. Aylor, D. E. 1975. Force required to detach conidia of Helminthosporium maydis. Plant Physiol. 55:99-101. https://doi.org/10.1104/pp.55.1.99
  4. Aylor, D. E., McCartney, H. A. and Bainbrioge, A. 1981. Deposition of particles liberated in gusts of wind. J. Appl. Meteorol. Clim. 20:1212-1221. https://doi.org/10.1175/1520-0450(1981)020<1212:TDOSLS>2.0.CO;2
  5. Back, C.-K. and Jung, H.-Y. 2014. Biological characterization of Marssonina coronaria infecting apple trees in Korea. Korean J. Mycol. 42:183-190 (in Korean). https://doi.org/10.4489/KJM.2014.42.3.183
  6. Burch, M. and Levetin, E. 2002. Effects of meteorological conditions on spore plumes. Int. J. Biometeorol. 46:107-117. https://doi.org/10.1007/s00484-002-0127-1
  7. Davis, J. M. 1987. Modeling the long-range transport of plant pathogens in the atmosphere. Annu. Rev. Phytopathol. 25:169-188. https://doi.org/10.1146/annurev.py.25.090187.001125
  8. Do, Y. S. and Park, M. Y. 2015. Development of integrated management technic for control of apple brown leaf spot. Rural Development Administration, Jeonju, Korea. 44 pp.
  9. Fitt, B. D. L., McCartney, H. A. and Walklate, P. J. 1989. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27:241-270. https://doi.org/10.1146/annurev.py.27.090189.001325
  10. Gottwald, T. R. and Bertrand, P. F. 1982. Patterns of diurnal and seasonal airborne spore concentrations of Fusicladium effusum and its impact on a pecan scab epidemic. Phytopathology 72:330-335.
  11. Hammett, K. R. W. and Manners, J. G. 1974. Conidium liberation in Erysiphe graminis: III. Wind tunnel studies. Trans. Br. Mycol. Soc. 62:267-282. https://doi.org/10.1016/s0007-1536(74)80035-5
  12. Harada, Y., Sawamura, K. and Konno, K. 1974. Diplocarpon mali, sp. nov., the perfect state of apple blotch fungus Marssonina coronaria. Jpn. J. Phytopathol. 40:412-418. https://doi.org/10.3186/jjphytopath.40.412
  13. Hirst, J. M. and Stedman, O. J. 1963. Dry liberation of fungus spores by raindrops. J. Gen. Microbiol. 33:335-344. https://doi.org/10.1099/00221287-33-2-335
  14. Kim, C.-H. 2004. Review of disease incidence of major crops in 2003. Res. Plant Dis. 10:1-7 (in Korean). https://doi.org/10.5423/RPD.2004.10.1.001
  15. Kim, D.-A., Lee, S.-W. and Lee, J.-T. 1998. Ecology of marssonina blotch caused by Diplocarpon mali on apple tree in Kyungpook, Korea. Curr. Res. Agric. Life. Sci. 16:84-95 (in Korean).
  16. Kurkela, T. 1997. The number of Cladosporium conidia in the air in different weather conditions. Grana 36:54-61. https://doi.org/10.1080/00173139709362591
  17. Kwak, S. K. and Kim, J. H. 2017. Statistical data preparation: management of missing values and outliers. Korean. J. Anesthesiol. 70:407-411. https://doi.org/10.4097/kjae.2017.70.4.407
  18. Lee, C., Lee, S.-Y., Jung, H.-Y. and Kim, J. 2012. The application of optical coherence tomography in the diagnosis of Marssonina blotch in apple leaves. J. Opt. Soc. Korea 16:133-140. https://doi.org/10.3807/JOSK.2012.16.2.133
  19. Lee, D.-H., Back, C.-G., Win, N. K. K., Choi, K.-H., Kim, K.-M., Kang, I.-K., Choi, C., Yoon, T.-M., Uhm, J. Y. and Jung, H.-Y. 2011. Biological characterization of Marssonina coronaria associated with apple blotch disease. Mycobiology 39:200-205. https://doi.org/10.5941/MYCO.2011.39.3.200
  20. Lee, D. H., Kim, D. H., Shin, H. C. and Uhm, J. Y. 2008. Development of a 15-day interval spraying program for controlling major apple diseases. Plant Pathol. J. 24:439-446. https://doi.org/10.5423/PPJ.2008.24.4.439
  21. Lee, D. H., Lee, S. W., Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22:375-380. https://doi.org/10.5423/PPJ.2006.22.4.375
  22. Lee, D. H., Shin, H. C., Cho, R. H. and Uhm, J. Y. 2009. Reducing fungicidal spray frequency for major apple diseases by increasing the spray interval from 15 to 25 days. Plant Pathol. J. 25:270-279. https://doi.org/10.5423/PPJ.2009.25.3.270
  23. Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S. J. and Chung, H. S. 1993. Detailed survey of apple and pear diseases in major fruit producing areas of Korea ('88-'92). Korean J. Plant Pathol. 9:47-51.
  24. Legg, B. J. and Powell, F. A. 1979. Spore dispersal in a barley crop: a mathematical model. Agric. Meteorol. 20:47-67. https://doi.org/10.1016/0002-1571(79)90050-5
  25. Li, J., Gou, L.-X., Hu, X.-M., Ren, F.-P., Wei, J.-F. and An, D.-R. 2011. Effects of climate factors on the epidemic of apple Marssonina blotch in Shaanxi Province and related prediction models. Chin. J. Appl. Ecol. 22:268-272 (in Chinese).
  26. Magarey, R. D., Sutton, T. B. and Thayer, C. L. 2005. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95:92-100. https://doi.org/10.1094/PHYTO-95-0092
  27. McCartney, H. A. 1994. Dispersal of spores and pollen from crops. Grana 33:76-80. https://doi.org/10.1080/00173139409427835
  28. McCartney, H. A. and Bainbridge, A. 1984. Deposition gradients near to a point source in a barley crop. J. Phytopathol. 109:219-236. https://doi.org/10.1111/j.1439-0434.1984.tb00711.x
  29. Oliveira, M., Ribeiro, H., Delgado, J. L. and Abreu, I. 2009. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int. J. Biometeorol. 53:61-73. https://doi.org/10.1007/s00484-008-0191-2
  30. Park, M.-Y., Sagong, D.-H., Kweon, H.-J., Do, Y.-S., Song, Y.-Y. and Lee, D.-H. 2013. Influence of seasonal incidence and defoliation degree of Marssonina blotch on fruit quality and shoot growth of 'Fuji'/M.9 apple tree. Korean J. Hortic. Sci. Technol. 31:523-530 (in Korean). https://doi.org/10.7235/hort.2013.12109
  31. Penet, L., Guyader, S., Petro, D., Salles, M. and Bussiere, F. 2014. Direct splash dispersal prevails over indirect and subsequent spread during rains in Colletotrichum gloeosporioides infecting yams. PLoS ONE 9:e115757. https://doi.org/10.1371/journal.pone.0115757
  32. Quintero, E., Rivera-Mariani, F. and Bolanos-Rosero, B. 2010. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia 26:113-124. https://doi.org/10.1007/s10453-009-9148-0
  33. Sache, I. 2000. Short-distance dispersal of wheat rust spores by wind and rain. Agronomie 20:757-767. https://doi.org/10.1051/agro:2000102
  34. Sagong, D.-H., Kweon, H.-J., Song, Y.-Y., Park, M.-Y., Nam, J.-C., Kang, S.-B. and Lee, S.-G. 2011. Influence of defoliation by Marssonina blotch on vegetative growth and fruit quality in 'Fuji'/M.9 apple tree. Korean J. Hortic. Sci. Technol. 29:531-538 (in Korean).
  35. Sastrahidayat, I. R. and Nirwanto, H. 2016. Marssonina leaf blotch on the apple ochard in Batu, Indonesia. Aravita J. Agric. Sci. 38:204-212.
  36. Sharma, J., Sharma, A. and Sharma, P. 2004. Out-break of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Hortic. 662:405-409. https://doi.org/10.17660/actahortic.2004.662.61
  37. Sharma, N., Thakur, V. S., Mohan, J., Khurana, S. M. P. and Sharma, S. 2009. Epidemiology of Marssonina blotch (Marssonina coronaria) of apple in India. Indian Phytopathol. 62:348-359.
  38. Takahashi, S., Sawamura, K. and Sato, Y. 1990. Marssonina blotch. In: Compendium of apple and pear diseases, eds. by A. L. Jones and H. S. Aldwinckle, p. 33. American Phytopathological Society, St. Paul, MN, USA.
  39. Tamietti, G. and Matta, A. 2003. First report of leaf blotch caused by Marssonina coronaria on apple in Italy. Plant Dis. 87:1005. https://doi.org/10.1094/PDIS.2003.87.8.1005B
  40. Troutt, C. and Levetin, E. 2001. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int. J. Biometeorol. 45:64-74. https://doi.org/10.1007/s004840100087
  41. Uhm, J. Y. 2010. Reduced fungicide spray program for major apple diseases Korea. Agriculture and Horticulture Press, Anyang, Korea. 251 pp.
  42. Van der Plank, J. E. 1963. Plant diseases: epidemics and control. Academic Press, New York, NY, USA. 349 pp.
  43. Willocquet, L., Berud, F., Raoux, L. and Clerjeau, M. 1998. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathol. 47:234-242. https://doi.org/10.1046/j.1365-3059.1998.00242.x
  44. Willocquet, L. and Clerjeau, M. 1998. An analysis of the effects of environmental factors on conidial dispersal of Uncinula necator (grape powdery mildew) in vineyards. Plant Pathol. 47:227-233. https://doi.org/10.1046/j.1365-3059.1998.00244.x
  45. Xu, X.-M., Butt, D. J. and Van Santen, G. 1995. A dynamic model simulating infection of apple leaves by Venturia inaequalis. Plant Pathol. 44:865-876. https://doi.org/10.1111/j.1365-3059.1995.tb02746.x
  46. Zhao, H., Huang, L., Xiao, C. L., Liu, J., Wei, J. and Gao, X. 2010. Influence of culture media and environmental factors on mycelial growth and conidial production of Diplocarpon mali. Lett. Appl. Microbiol. 50:639-644. https://doi.org/10.1111/j.1472-765X.2010.02847.x