DOI QR코드

DOI QR Code

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing (Dept. of Information Technology Center, Jiujiang University) ;
  • Shin, Seong-Yoon (School of Computer Inf. & Comm. Eng., Kunsan National University) ;
  • Lee, Won Joo (Dept. of Computer Science, Inha Technical College)
  • Received : 2019.11.12
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

With the in-depth development of machine learning, the deep learning method has made great progress, especially with the Convolution Neural Network(CNN). Compared with traditional text sentiment classification methods, deep learning based CNNs have made great progress in text classification and processing of complex multi-label and multi-classification experiments. However, there are also problems with the neural network for text sentiment classification. In this paper, we propose a fusion model based on Long-Short Term Memory networks(LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.

머신 러닝의 심층 개발로 딥 러닝 방법은 특히 CNN(Convolution Neural Network)에서 큰 진전을 이루었다. 전통적인 텍스트 정서 분류 방법과 비교할 때 딥 러닝 기반 CNN은 복잡한 다중 레이블 및 다중 분류 실험의 텍스트 분류 및 처리에서 크게 발전하였다. 그러나 텍스트 정서 분류를 위한 신경망에도 문제가 있다. 이 논문에서는 LSTM (Long-Short Term Memory network) 및 CNN 딥 러닝 방법에 기반 한 융합 모델을 제안하고, 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝을 기반으로 한 융합 모델이 텍스트 정서 분류의 예측성과 정확성을 크게 개선하였다. 본 논문에서 제안한 방법은 모델을 최적화하고 그 모델의 성능을 개선하는 중요한 방법이 될 것이다.

Keywords

References

  1. Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, Frank Zimmer, "Automated Checking of Conformance to Requirements Templates Using Natural Language Processing," IEEE Transactions on Software Engineering, Vol. 41, Issue 10, pp. 944-968, May, 2015. DOI: 10.1109/TSE.2015.2428709.
  2. Mohd Ibrahim, Rodina Ahmad, "Class Diagram Extraction from Textual Requirements Using Natural Language Processing (NLP) Techniques," 2010 Second International Conference on Computer Research and Development, pp. 200-204, 2010. DOI: 10.1109/ICCRD.2010.71.
  3. Sweta P. Lende, M. M. Raghuwanshi, "Question answering system on education acts using NLP techniques," 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare(Startup Conclave), pp. 1-6, 2016. DOI: 10.1109/STARTUP.2016.7583963.
  4. C. Janarish Saju, A. S. Shaja, "A Survey on Efficient Extraction of Named Entities from New Domains Using Big Data Analytics," 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), pp. 170-175, 2017. DOI: 10.1109/ICRTCCM.2017.34.
  5. Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria, "Recent Trends in Deep Learning Based Natural Language Processing," IEEE Computational Intelligence Magazine, Vol. 13, pp. 55-75, Nov. 2018. DOI: 10.1109/MCI.2018.2840738.
  6. THUCTC: An efficient Chinese text classification toolkit. [Online]. Available: http://thuctc.thunlp.org.

Cited by

  1. Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms vol.25, pp.4, 2019, https://doi.org/10.9708/jksci.2020.25.04.019