DOI QR코드

DOI QR Code

딥러닝 객체인식을 통한 경로보정 자율 주행 로봇의 구현

Implementation of Autonomous Mobile Wheeled Robot for Path Correction through Deep Learning Object Recognition

  • 이형일 (김포대학교 CIT융합학부 컴퓨터소프트웨어과) ;
  • 김진명 (김포대학교 CIT융합학부 컴퓨터소프트웨어과) ;
  • 이재원 ((주)솔엔비)
  • 투고 : 2019.09.23
  • 심사 : 2019.10.24
  • 발행 : 2019.12.28

초록

본 논문에서는 실내 환경에서 시각정보를 기반으로 출발지점에서 경유지를 거쳐 목표지점으로 최적의 경로를 찾아 자율 주행하는 바퀴달린 로봇을 구현한다. 로봇은 출발지점에서 경유지를 거쳐 목표지점으로의 최적의 경로를 딥강화학습으로 얻을 수 있다. 그러나 로봇이 구해진 경로로 자율 주행을 할 때 표면의 굴곡과 이물질 등의 외부적 요인으로 목적지까지 정확하게 주행하지 못하는 경우가 발생한다. 이에 본 연구는 카메라만 장착한 로봇이 외부 요인으로 인해 최적의 경로를 이탈할 경우 이를 인지하도록 한다. 이 인지를 토대로 로봇이 스스로 경로를 보정하고 계획된 경유지와 최종 목적지점에 도달할 수 있게 하는 알고리즘을 제안한다. 본 연구를 위해 파이캠을 탑재한 라즈베리파이와 아두이노로 제어하는 바퀴식 자율 주행 로봇이 제작되었다. 로봇은 실내환경에서 OSX 환경의 서버와 실시간 연동하면서 계획된 최적의 경로로 시험주행을 완료하였다.

In this paper, we implement a wheeled mobile robot that accurately and autonomously finds the optimal route from the starting point to the destination point based on computer vision in a complex indoor environment. We get a number of waypoints from the starting point to get the best route to the target through deep reinforcement learning. However, in the case of autonomous driving, the majority of cases do not reach their destination accurately due to external factors such as surface curvature and foreign objects. Therefore, we propose an algorithm to deepen the waypoints and destinations included in the planned route and then correct the route through the waypoint recognition while driving to reach the planned destination. We built an autonomous wheeled mobile robot controlled by Arduino and equipped with Raspberry Pi and Pycamera and tested the planned route in the indoor environment using the proposed algorithm through real-time linkage with the server in the OSX environment.

키워드

참고문헌

  1. Y. Bengio, A. Courville, and P. Vincent, "Representation Learning: A Review and New Perspectives," IEEE Trans. PAMI, special issue Learning Deep Architectures, 2013.
  2. Dr. Adrian Rosebrock, "Deep Learning for Computer Vision with Python," Starter Bundle, PyImageSearch.com, September, 2017.
  3. Qian Zhang, Ming Li, Xuesong Wang, and Yong Zhang, "Learning in Robot Path Optimization," Journal of software, Vol.7, No.3, Mar. 2012.
  4. R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction, The MIT Press. 1998.
  5. Christopher JCH Watkins, Peter Dayan, "Technical Note Q-Learning," Machine Learning, Vol.8, pp.279-292, 1992 https://doi.org/10.1007/BF00992698
  6. An-Min, Zou Zeng-Guang, HouSi-Yao, and FuMin Tan, "Neural Networks for Mobile Robot Navigation: A Survey," Advances in Neural Networks-ISNN, China, pp.1218-1226, 2006.
  7. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, and Marc G Bellemare, et al. "Human-level control through deep reinforcement learning," Nature, Vol.518, pp.529-533, 26 February 2015. https://doi.org/10.1038/nature14236
  8. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller, "Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 2013.
  9. Tao Zhang, Qing Li, Chang-shui Zhang, Hua-wei Liang, Ping Li, and Tian-miao Wang, "Current trends in the development of intelligent unmanned autonomous systems," Frontiers of Information Technology & Electronic Engineering, Vol.18, pp.68-85, 2017. https://doi.org/10.1631/fitee.1601650
  10. Widodo, Nuryono Satya, "Penerapan Multi-Mikrokontroler pada Model Robot Mobil Berbasis Logika Fuzi," TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol.7, No.3, pp.213-218, 2009.
  11. Widodo Budiharto, Ari Santoso, Djoko Purwanto, and Achmad Jazidie, "Multiple Moving Obstacles Avoidance of Service Robot using Stereo Vision," TELKOMNIKA, Vol.9, No.3, pp.433-444, Dec. 2011. https://doi.org/10.12928/telkomnika.v9i3.733
  12. Sheha Ame Mnubi, "Motion Planning and Trajectory for Wheeled Mobile Robot," International Journal of Science and Research (IJSR), ISSN (Online), pp.2319-7064, 2014.
  13. 석정희, 여준기, "자율주행 인공지능 컴퓨팅 하드웨어 플랫폼 기술 동향," 전자통신동향분석, Vol.33, No.6, 2018.