DOI QR코드

DOI QR Code

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Baek, Seungkwon (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2017.09.21
  • Accepted : 2018.05.27
  • Published : 2018.10.01

Abstract

In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

Keywords

References

  1. TU-R SG05 Contribution 40, Minimum requirements related to technical performance for IMT-2020 radio interface(s), Feb. 23, 2017.
  2. GMN Alliance, NGMN 5G White Paper, Feb. 17, 2015.
  3. F. Boccardi et al., Five disruptive technology directions for 5G, IEEE Commun. Mag. 52 (2014), no. 2, 74-80. https://doi.org/10.1109/MCOM.2014.6736746
  4. R. J. Weiler et al., Enabling 5G backhaul and access with millimeter-waves, Eur. Conf. Netw. Commun., Bologna, Italy, June 23-26, 2014, pp. 1-5.
  5. E. G. Larsson et al., Massive MIMO for next generation wireless systems, IEEE Commun. Mag. 52 (2014), no. 2, 186-195. https://doi.org/10.1109/MCOM.2014.6736761
  6. Z. Zhang et al., Large-scale MIMO-based wireless backhaul in 5G networks, IEEE Wireless Commun. 22 (2015), no. 5, 58-66. https://doi.org/10.1109/MWC.2015.7306538
  7. H. S. Dhillon and G. Caire, Wireless backhaul networks capacity bound, scalability analysis and design guidelines, IEEE Trans. Wireless Commun. 14 (2015), no. 11, 6043-6056. https://doi.org/10.1109/TWC.2015.2447534
  8. W. Feng et al., Millimetre‐wave backhaul for 5G networks challenges and solutions, Sens. 16 (2016), no. 6, 892:1-892:17. https://doi.org/10.1109/JSEN.2016.2617091
  9. H. Abbas, K. Hamdi, and Full duplex relay in millimeter wave backhaul links, IEEE Conf. Wireless Commun. Netw. Conf., Doha, Qatar, Apr. 3-6, 2016, pp. 1-6.
  10. A. Sharma, R. K. Ganti, and J. K. Milleth, Joint backhaul-access analysis of full duplex elf-backhauling heterogeneous networks, IEEE Trans. Wirel. Commun. 16 (2017), no. 3, 1727-1740. https://doi.org/10.1109/TWC.2017.2653108
  11. S. Rajagopal, R. Taori, and S. Abu-Surra, Self-interference mit- igation for in-band mmWave wireless backhaul, Consumer Commun. Netw. Conf., Las Vegas, USA, Jan. 10-13, 2014, pp. 551-556.
  12. A. I. Nasr and Y. Fahmy, Millimeter-wave wireless backhauling for 5G small cells: Star versus mesh topologies, Int. Conf. Microelectron., Giza, Egypt, Dec. 17-20, 2016, pp. 85-88.
  13. T. L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Commun. 9 (2010), no. 11, 3590-3600. https://doi.org/10.1109/TWC.2010.092810.091092
  14. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO system, IEEE Trans. Commun. 61 (2013), no. 4, 1436-1449. https://doi.org/10.1109/TCOMM.2013.020413.110848
  15. F. Rusek et al., Scaling up MIMO: Opportunities and challenges with large arrays, IEEE Signal Process. Mag. 30 (2013), no. 1, 40-60. https://doi.org/10.1109/MSP.2011.2178495
  16. A. Sabharwal et al., In-band full-duplex wireless: Challenges and opportunities, IEEE J. Sel. Areas Commun. 32 (2014), no. 9, 1637-1652. https://doi.org/10.1109/JSAC.2014.2330193
  17. E. Everett, A. Sahai, and A. Sabharwal, Passive self-interference suppression for full-duplex infrastructure nodes, IEEE Trans. Wireless Commun. 13 (2004), no. 2, 680-694. https://doi.org/10.1109/TWC.2013.010214.130226
  18. B. Yin et al., Full-duplex in large-scale wireless systems, Asilomar Conf. Signals, Syst. Comput., Pacific Grove, USA, Nov. 3-6, 2013, pp. 1623-1627.
  19. C. Wang et al., On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error, IEEE Trans. Wireless Commun. 6 (2007), no. 3, 805-810. https://doi.org/10.1109/TWC.2007.05384
  20. Y. Wang and S. Mao, On distributed power control in full duplex wireless networks, Digital Commun. Netw. 3 (2017), no. 1, 1-10. https://doi.org/10.1016/j.dcan.2016.10.004
  21. W. Cheng, X. Zhang, and H. Zhang, Optimal dynamic power control for full-duplex bidirectional-channel based wireless networks, IEEE Int. Conf. Comput. Commun., Turin, Italy, Apr. 14-19, 2013, pp. 3120-3128.
  22. Y. Lim, C. Chae, and G. Caire, Performance analysis of massive MIMO for cell-boundary users, IEEE Trans. Wireless Commun. 14 (2015), no. 12, 6827-6842. https://doi.org/10.1109/TWC.2015.2460751
  23. J. B. Andersen, Array gain and capacity for known random channels with multiple element arrays at both ends, IEEE J. Sel. Areas Commun. 18 (2000), no. 11, 2172-2178. https://doi.org/10.1109/49.895022
  24. T. Taniguchi, S. Sha, and Y. Karasawa, An approximation of eigenvalue distribution in i.i.d MIMO channels under Rayleigh fading, IEEE/SP Workshop Stat. Signal Process., Bordeaux, France, July 17-20, 2005, pp. 1072-1077.