DOI QR코드

DOI QR Code

신경 인터페이스 기반 초감각 디바이스 기술 동향

Neural Interface-based Hyper Sensory Device Technology Trend

  • 발행 : 2018.12.01

초록

Sensory devices have been developed to help people with disabled or weakened sensory functions. Such devices play a role in collecting and transferring data for the five senses (vision, sound, smell, taste, and tactility) and also stimulating nerves. To provide brain or prosthesis devices with more sophisticated senses, hyper sensory devices with a high resolution comparable to or even better than the human system based on individual neuron cells are essential. As for data collecting components, technologies for sensors with higher resolution and sensitivity, and the conversion of algorithms from physical sensing data to human neuron signals, are needed. Converted data can be transferred to neurons that are responsible for human senses through communication with high security, and neural interfaces with high resolution. When communication deals with human data, security is the most important consideration, and intra-body communication is expected to be a candidate with high priority. To generate sophisticated human senses by modulating neurons, neural interfaces should modulate individual neurons, and therefore a high resolution compared to human neurons (~ several tens of um) with a large area covering neuron cells for human senses (~ several tens of mm) should be developed. The technological challenges for developing sensory devices with human and even beyond-human capabilities have been tackled by various research groups, the details of which are described in this paper.

키워드

HJTOCM_2018_v33n6_69_f0001.png 이미지

(그림 1) 신경 인터페이스 기반 초감각 디바이스 기술의 활용 분야

HJTOCM_2018_v33n6_69_f0002.png 이미지

(그림 2) 초감각 센서 및 신경 인터페이스를 통한 시·촉각 기반 초감각 디바이스 기술 개념도

HJTOCM_2018_v33n6_69_f0003.png 이미지

(그림 3) 인간 피부 감각수용기의 구조

HJTOCM_2018_v33n6_69_f0004.png 이미지

(그림 4) 인간 피부를 모사하여 여러 개별센서를 집적하여 제작한 센서 매트릭스

HJTOCM_2018_v33n6_69_f0005.png 이미지

(그림 5) 응용 목적에 따른 기판 소재의 요구 조건

HJTOCM_2018_v33n6_69_f0006.png 이미지

(그림 6) 유연기판상에 구현된 뇌신경기반 감각 인터페이스 기술 개념도

HJTOCM_2018_v33n6_69_f0007.png 이미지

(그림 7) 인트라바디 나노 커넥텀 개념도

HJTOCM_2018_v33n6_69_f0008.png 이미지

(그림 8) 인트라바디 나노커넥텀 활용 예시

참고문헌

  1. 김병희, "로봇에게 촉감 입힐 인공신경 탄생," 사이언스타임즈, 2018. 6. 1.
  2. 노동균, "감각 기능 갖춘 의수.의족 나온다," 조선일보, 2017. 10. 10.
  3. 정재훈, "의족.의수도 마음대로 움지인다... DGIST, 말초신경 인터페이스 기술 개발," 전자신문, 2017. 06. 20.
  4. 산업통상자원부, "제 4차 소재부품발전 기본계획," 고시 제2017-58호, 2017. 04. 26.
  5. 한국뇌연구원, "제 3차 뇌연구촉진 기본계획," https://www.kbri.re.kr/new/pages/sub/page.html?mc=3652
  6. Q. Hua et al., "Skin-Inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing," Nature Commun., vol. 9, Jan. 2018, Article no. 244.
  7. J. Kim et al., "Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis," Nature Commun., vol. 5, 2014, Article no. 5747.
  8. M. Liu et al., "Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals," Adv. Mater., vol. 29, 2017, Article no.1703700.
  9. K. Chun et al., "A Self-Powered Sensor Mimicking Slow- and Fast-Adapting Cutaneous Mechanoreceptors," Adv. Mater., vol. 30, 2018, Article no. 1706299.
  10. F. Zhang et al., "Flexible and Self-Powered Temperature-Pressure Dual-Parameter Sensors Using Microstructure-Frame-Supported Organic Thermoelectric Materials," Nature Commun., vol. 6, 2015, Article no. 8356.
  11. N.T. Tien et al., "A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature," Adv. Mater., vol. 26, 2014, pp. 796-804. https://doi.org/10.1002/adma.201302869
  12. Y. Kim et al., "A Bioinspired Flexible Organic Artificial Afferent Nerve," Sci., vol. 360, 2018, pp. 998-1003. https://doi.org/10.1126/science.aao0098
  13. P. Delmas et al., "Molecular Mechanisms of Mechanotransduction in Mammalian Sensory Neurons," Nature Rev. Neurosci., vol. 12, 2011, pp. 139-153. https://doi.org/10.1038/nrn2993
  14. M. Rasouli et al., "An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition," IEEE Trans. Biomed. Circuits Syst., vol. 12, 2018, pp. 313-325. https://doi.org/10.1109/TBCAS.2018.2805721
  15. S. Chun et al., "Recognition, Classification, and Prediction of the Tactile Sense," Nanoscale, vol. 10, 2018, pp. 10545-10553. https://doi.org/10.1039/C8NR00595H
  16. L.E. Osborn et al., "Prosthesis with Neuromorphic Multilayered E-Dermis Perceives Touch and Pain," Sci. Robotics, vol. 3, 2018, Article no. 3818.
  17. S. Raspopovic et al., "Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses," Sci. Transl. Med., vol. 6, 2014, Article no. 222ra19.
  18. 최영준, "마비 환자, 로봇 팔로 새 감각 얻다," 동아사이언스, 2016. 11. 12.
  19. S.T, et al., "Polyimide-Based Devices for Flexible Neural Interfaces," Biomed Microdevices, vol. 2, 2000, pp. 283-294. https://doi.org/10.1023/A:1009955222114
  20. T. Stieglitz et al., "Implantable Biomedical Microsystems for Neural Prostheses," IEEE Eng. Med. Biol. Mag., vol. 24, no. 5, 2005, pp. 58-65
  21. L. Guo et al. "A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing," IEEE Trans. Biomed Circuits Syst., vol. 7, no. 1, 2013, pp. 1-10. https://doi.org/10.1109/TBCAS.2012.2192932
  22. C.J. Bettinger, "Recent Advances in Materials and Flexible Electronics for Peripheral Nerve Interfaces," Bioelectronic Medicine, vol. 4, no.6, pp. 1-10.
  23. J.H. Lee et al., "Soft Implantable Microelectrodes for Future Medicine: Prosthetics, Neural Signal Recording and Neuromodulation," Lab Chip., vol. 16, no. 6, 2016, pp. 959-976. https://doi.org/10.1039/C5LC00842E
  24. Y.H. Kim, et al., "Iridium Oxide-Electrodeposited Nanoporous Gold Multielectrode Array with Enhanced Stimulus Efficacy," Nano Lett., vol. 16, no. 11, 2016, pp.7163-7168. https://doi.org/10.1021/acs.nanolett.6b03473
  25. R.A. Green, et al. "Performance of Conducting Polymer Electrodes for Stimulating Neuroprosthetics," J. Neural Eng., vol. 10, no. 1, 2013, Article no. 016009..
  26. S.A. Hara et al. "Long-Term Stability Of Intracortical Recordings Using Perforated and Arrayed Parylene Sheath Electrodes," J. Neural Eng., vol. 13, no. 6, 2016, Article no. 066020.
  27. R.J. Narayan et al., "Medical Applications of Diamond Particles & Surfaces," Mater Today, vol. 14, no. 4, 2011, pp. 154-163. https://doi.org/10.1016/S1369-7021(11)70087-6
  28. H. Noh et al., "Wafer Bonding Using Microwave Heating of Parylene Intermediate Layers," J. Micromechanics Microeng., vol. 14, no. 4, 2004, pp. 625-631. https://doi.org/10.1088/0960-1317/14/4/025
  29. X. Xie et al., "Long-Term Reliability of $Al_2O_3$ and Parylene C Bilayer Encapsulated Utah Electrode Array Based Neural Interfaces for Chronic Implantation," J. Neural Eng., vol. 11, no. 2, 2014, Article no. 026016.
  30. R. Caldwell et al., "Analysis of $Al_2O_3$-Parylene C Bilayer Coatings and Impact of Microelectrode Topography on Long Term Stability of Implantable Neural Arrays," J. Neural Eng., vol. 14, no. 4, 2017, pp. 046011:1-046011:21.
  31. W.-C. Huang et al., "Ultracompliant Hydrogel-Based Neural Interfaces Fabricated by Aqueous-Phase Microtransfer Printing," Adv. Funct. Mater., vol. 28, no. 29, 2018, Article no. 1801059.
  32. W.S. Konerding et al., "New Thin-Film Surface Electrode Array Enables Brain Mapping with high Spatial Acuity in Rodents," Scientific Reports, vol. 8, 2018, Article no. 3825.
  33. R. Schart et al., "A Compact Integrated Device for Spatially Selective Optogenetic Neural Stimulation Based on the Utah Optrode Array," Proc. SPIE, vol. 10482, 2018, pp. 104820M:1-104820M:4.
  34. A.C. Horvath et al., "A Multimodal Microtool for Spatially Controlled Infrared Neural Stimulation in the Deep Brain Tissue," Sensors Actuators B: Chemical, vol. 263, 2018, pp. 77-86. https://doi.org/10.1016/j.snb.2018.02.034
  35. S. Anthony, "DARPA's Tiny Implants will Hook Directly into Your Nervous System, Treat Diseases and Depression Without Medication," EXTREME TECH, Aug. 29, 2014. https://www.extremetech.com/extreme/188908-darpas-tiny-implants-will-hook-directly-into-your-nervous-system-treat-diseases-and-depression-without-medication.
  36. U.S Department of Defense, "DARPA Funds Brain-Stimulation Research to Speed Learning," Apr. 27, 2017. https://www.defense.gov/News/Article/Article/1164793/darpa-funds-brain-stimulation-research-to-speed-learning/
  37. B. Alberts, "Essential Cell Biology," Garland Science: New York, USA, 2010.
  38. B.D. Unluturk, "Genetically Engineered Bacteria-Based BioTransceivers for Molecular Communication," IEEE Trans. Commun., vol. 63, no. 4, Apr. 2015, pp. 1271-1281. https://doi.org/10.1109/TCOMM.2015.2398857
  39. I.F. Akyildiz, "The Internet of Bio-Nano things," IEEE Commun. Mag., vol. 53, no. 3, Mar. 2015, pp. 32-40. https://doi.org/10.1109/MCOM.2015.7060516
  40. R. Sanders, "Sprinkling of Neural Dust Opens Door to Electroceuticals," Berkeley News, Aug. 3, 2016.
  41. B. Hirschler, "GSK and Google Parent Forge $715 Million Bioelectronic Medicines Firm," Business News, Aug. 1, 2016.
  42. 김성은, 박형일, 임인기, 오광일, 강태욱, 박미정, 강성원, "WBAN 인체통신 기술동향분석," 전자통신동향분석, 제31권 제6호, 2016, pp. 31-38. https://doi.org/10.22648/ETRI.2016.J.310604