DOI QR코드

DOI QR Code

가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(I) - 표준지하수지수(SGI)를 이용한 지하수 가뭄 모니터링

Development of groundwater level monitoring and forecasting technique for drought analysis (I) - Groundwater drought monitoring using standardized groundwater level index (SGI)

  • 이정주 (한국수자원공사 물정보종합센터) ;
  • 강신욱 (K-water융합연구원) ;
  • 정지혜 (한국수자원공사 낙동강사업계획처) ;
  • 전근일 (한국수자원공사 물정보종합센터)
  • Lee, Jeongju (Water Data Collection and Analysis Department, K-water) ;
  • Kang, Shinuk (K-water Convergence Institute) ;
  • Jeong, Jihye (Nakdonggang River Regional Head Office Business Planning Department, K-water) ;
  • Chun, Gunil (Water Data Collection and Analysis Department, K-water)
  • 투고 : 2018.07.04
  • 심사 : 2018.09.14
  • 발행 : 2018.11.30

초록

본 연구에서는 미급수지역의 주요 수원인 지하수위 현황을 이용한 가뭄 모니터링 기법을 개발하기 위해 256개의 국가지하수관측망 관측 자료를 이용하여 관측소별, 월별 수위분포를 핵밀도함수로 추정하였다. 추정된 누적분포함수를 이용하여 월별 지하수위의 분위수를 구하고, 분위수를 정규화 하여 표준지하수지수(SGI)를 산정하였다. 관측소별로 산정된 SGI는 티센망을 이용하여 167개 시군별 SGI로 변환하였다. SGI의 범위에 따른 가뭄등급을 설정하여 시군별 지하수 가뭄 정도를 모니터링 할 수 있는 기법을 제시하였다. 이를 통해 계측이 이루어지지 않는 미급수지역의 지하수가뭄상황을 국가지하수관측망을 활용해 간접적으로 판단할 수 있도록 하였다.

This study aims to develop a drought monitoring scheme based on groundwater which can be exploit for water supply under drought stress. In this context, groundwater level can be used as a proxy for better understanding the temporal evolution of drought state. First, kernel density estimator is presented in the monthly groundwater level over the entire national groundwater stations. The estimated cumulative distribution function is then utilized to map the monthly groundwater level into the standardized groundwater level index (SGI). The SGI for each station was eventually converted into the index for major cities through the Thiessen polygon approach. We provide a drought classification for a given SGI to better characterize the degree of drought condition. Ultimately, we conclude that the proposed monitoring framework enables a more reliable estimation of the drought stress, especially for a limited water supply area.

키워드

참고문헌

  1. Bloomfield, J. P., and Marchant, B. P. (2013). "Analysis of groundwater drought building on the standardised precipitation index approach." Hydrology and Earth System Sciences, Vol. 17, pp. 4769-4787. https://doi.org/10.5194/hess-17-4769-2013
  2. Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias." Bioinformatics, Vol. 19, No. 2, pp. 185-193. https://doi.org/10.1093/bioinformatics/19.2.185
  3. Choi, H. M., Lee, J. Y., Ha, K., and Kim, G. P. (2011). "The study on time series analysis of groundwater data and groundwater recharge in Jeju island." The Journal of Engineering Geology, Vol. 21, No. 4, pp. 337-348. https://doi.org/10.9720/kseg.2011.21.4.337
  4. Chung, I. M., Lee, J., and Kim, N. W. (2011). "Estimating exploitable groundwater amount in Musimcheon watershed by using an integrated surface water-groundwater model." Economic and environmental geology, Vol. 44, No. 5, pp. 433-442. https://doi.org/10.9719/EEG.2011.44.5.433
  5. Econnics (2010). British Columbia Drought Response Plan. Prepared for the Ministry of Environment on behalf of the Inter-Agency Drought Working Group, Report updated July 2016, accessed 1 May 2018, .
  6. Jeon, H. T., and Kim, G. B. (2011). "Evaluation of interactions between surface water and groundwater based on temperature, flow properties, and geochemical data." The Journal of Engineering Geology, Vol. 21, No. 1, pp. 45-55. https://doi.org/10.9720/kseg.2011.21.1.045
  7. Kim, G. B., and Lee, S. H. (2012). "Applicability of logistic regression model of groundwater levels to drought forecast." Journal of the Geological Society of Korea, Vol. 48, No. 3, pp. 275-284.
  8. Kim, G. B., Choi, D. H., and Jeong, J. H. (2010). "Considerations on the specific yield estimation using the relationship between rainfall and groundwater level variations." The Journal of Engineering Geology, Vol. 20, No. 1, pp. 61-70.
  9. Kim, N. W., Chung, I. M., and Won, Y. S. (2006). "An integrated surface water-groundwater modeling by using fully combined SWAT-MODFLOW model." Journal of Korea Water Resources Association, Vol. 26, No. 5B, pp. 481-488.
  10. Kwon, H. J., and Kim, S. J. (2007). "Methodology of drought assessment using national groundwater monitoring network data." Journal of The Korean Society Of Civil Engineers, Vol. 27, No. 2, pp. 193-199.
  11. Lee, J. H., Hamm, S. Y., Cheong, J. Y., Jeong, J. H., Kim, K. S., Kim, N. H., and Kim, G. B. (2010). "Numerical simulation of the change in groundwater level due to construction of the Giheung tunnel." The Journal of Engineering Geology, Vol. 20, No. 4, pp. 449-459.
  12. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Preprints, 8th Conference on Applied Climatology, 17-22 January, Anaheim, CA, pp. 179-184.
  13. MOLIT and K-water (2016). National Ground Water Monitoring Network in Korea Annual Report 2016, ISBN 11-1611000-000155-10, pp. 8-9.
  14. National Drought Mitigation Centre (2018). Drought classification, accessed 30 April 2018, .
  15. Silverman, B. W. (1986). "The kernel estimator." Density Estimation for Statistics and Data Analysis, London: Chapman and Hall. pp. 9-13.
  16. USGS Groundwater Watch (2018). Active Groundwater Level Network, accessed 27 April 2018,