DOI QR코드

DOI QR Code

Effect of Laser Beam on Structural, Optical, and Electrical Properties of BaTiO3 Nanoparticles during Sol-Gel Preparation

  • Mostafa, Massaud (Laser Tech. & Environment Lab., Physics Department, Faculty of Science, South Valley University) ;
  • Ebnalwaled, Khaled (Electronics & Nano Devices Lab., Physics Department, Faculty of Science, South Valley University) ;
  • Saied, Hussien A. (Physics Department, Faculty of Science, South Valley University) ;
  • Roshdy, Reham (Laser Tech. & Environment Lab., Physics Department, Faculty of Science, South Valley University)
  • Received : 2018.07.30
  • Accepted : 2018.09.28
  • Published : 2018.11.30

Abstract

This work concentrated on the effect of different laser beams on the microstructure and dielectric properties of $BaTiO_3$ nanoparticles at different calcinations times during the gelling preparation step. The nanoparticles were prepared by the sol-gel method. A green (1000 mW, 532 nm) and red laser beam (500 mW, 808 nm), were applied vertically at the center of stirring raw materials. The samples were sintered at $1000^{\circ}C$ for 2, 4, and 6 h. X-ray diffraction (XRD) analysis showed that samples prepared under the green laser have the highest purity. The FT-IR spectra showed that the stretching and bending vibrations of TiO bond without any other bonds, which are compatible to the X-ray diffraction (XRD) results. Samples were characterized by transmission electron microscopy (TEM), Scan electron microscopy (SEM), and UV-Visible spectrophotometer. Characterization showed the samples prepared under the green laser to have the highest particle size (~ 50 nm) and transparency for all sintering durations. Laser beam effects on electrical characterization were studied. BT nanoparticles prepared under the green laser show the higher dielectric constant, which was found to increase with sintering temperature.

Keywords

References

  1. X. Xing, J. Deng, J. Chen, and G. Liu "Phase Evolution of Barium Titanate from Alkoxide Gel-Derived Precursor," J. Alloys Compd., 384 [1-2] 312-17 (2004) . https://doi.org/10.1016/j.jallcom.2004.06.062
  2. B. Lee and J. Zhang, "Preparation, Structure Evolution and Dielectric Properties of $BaTiO_3$ Thin Films and Powders by an Aqueous Sol-Gel Process," Thin Solid Films, 388 [1-2] 107-13 (2001). https://doi.org/10.1016/S0040-6090(01)00816-1
  3. W. F. Zhang, Z. Yin, and M. S. Zhang, "Photoluminescence in Anatase Titanium Dioxide Nanocrystals," Appl. Phys. B, 70 [2] 261-65 (2000). https://doi.org/10.1007/s003400050043
  4. T. Takagahara and K. Takeda, "Theory of the Quantum Confinement Effect on Excitons in Quantum Dots of Indirect-Gap Materials," Phys. Rev. B: Condens. Matter Mater. Phys., 46 [23] 15578-81(1992). https://doi.org/10.1103/PhysRevB.46.15578
  5. J. Yu, J. Sun, J. Chu, and D. Tang, "Light-Emission Properties in Nanocrystalline $BaTiO_3$," Appl. Phys. Lett., 77 [18] 2807-10 (2000). https://doi.org/10.1063/1.1322376
  6. L. Qi, B. I. Lee, P. Badhekab, L. Q. Wang, P. Gilmour, W. D. Samuels, and G. J. Exarhos, "Observation of Magnetoelectric Coupling in (1-x) $BaTiO_3/(x)La_{0.7}Sr_{0.3}MnO_3$ Composites," Mater. Lett., 59 [1] 5794-98 (2005).
  7. T. Tsumura, K. Matsuoka, and M. Toyoda, "Formation and Annealing of $BaTiO_3$ and $SrTiO_3$ Nanoparticles in KOH Solution," J. Mater. Sci. Technol., 26 [1] 33-8 (2010). https://doi.org/10.1016/S1005-0302(10)60005-9
  8. M. M. Lencka and R. E. Riman, "Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders," Chem. Mater., 5 [1] 61-70 (1993). https://doi.org/10.1021/cm00025a014
  9. C. Beck, W. Hartl, and R. Hempelman, "Size-Controlled Synthesis of Nanocrystalline $BaTiO_3$ by a Sol-Gel Type Hydrolysis in Microemulsion-Provided Nanoreactors," J. Mater. Res., 13 [11] 3174-80 (1998). https://doi.org/10.1557/JMR.1998.0431
  10. J. Wang, J. Fang, S. C. Ng, L. M. Gan, C. H. Chew, X. Wang, and Z. Shen, "Ultrafine Barium Titanate Powders via Microemulsion Processing Routes," J. Am. Ceram. Soc., 82 [4] 873-81 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01848.x
  11. Y. Kobayashi, A. Nishikata, T. Tanase, and M. Konno, "Size Effect on Crystal Structures of Barium Titanate Nanoparticles Prepared by a Sol-Gel Method," J. Sol-Gel Sci. Technol., 29 [1] 49-55 (2004). https://doi.org/10.1023/B:JSST.0000016137.82633.52
  12. W. Li, Z. Xu, R. Chu, P. Fu, and J. Hao, "Structure and Electrical Properties of $BaTiO_3$ Prepared by Sol-Gel Process," J. Alloys Compd., 482 [1-2] 137-40 (2009). https://doi.org/10.1016/j.jallcom.2009.02.137
  13. B. D. Cullity, Elements of X-Ray Diffractions; p. 102, Addison-Wesley, Reading, 1978.
  14. P. Lucena, O. Pessoa-Neto, I. Santos, A. Souza, E. Longo, and J. Varela, "Synthesis by the Polymeric Precursor Method and Characterization of Undoped and Sn, Cr and V-doped $ZrTiO_4$," J. Alloys Compd., 397 [1-2] 255-59 (2005). https://doi.org/10.1016/j.jallcom.2004.11.070
  15. S. Lee, T. Son, J. Yun, H. Kwon, G. L. Messing, and B. Jun, "Preparation of $BaTiO_3$ Nanoparticles by Combustion Spray Pyrolysis," Mater. Lett., 58 [22-23] 2932-36 (2004). https://doi.org/10.1016/j.matlet.2004.05.022
  16. A. Gaur and N. Sharma, "Structural, Optical and Ferroelectric Properties of $BaTiO_3$ Sintered at Different Temperatures," Int. J. Mater. Metall. Eng., 7 [12] 1727-30 (2013).
  17. D. Bäuerle and W. Dieter, "Thermal, Photophysical, and Photochemical Processes," pp. 13-38 in Laser Processing and Chemistry, Springer, Berlin, Heidelberg, 1996.
  18. M. S. Brown and C. B. Arnold, "Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification," pp. 91-120 in Laser Precision Microfabrication, Springer Series in Materials Science, Springer Berlin Heidelberg, 2010.
  19. R. Stoian, D. Ashkenasi, and A. Rosenfeld, and E. E. B. Campbell, "Coulomb Explosion in Ultrashort Pulsed Laser Ablation of $Al_2O_3$," Phys. Rev. B, 621 [19] 78183-13173 (2000).
  20. K. Yoshino, H. Fujii, and Y. Inuishi, "Influence of Liquid Hydrocarbon Layer on Laser-Induced Surface Damage," Appl. Phys., 11 [9] 127-29 (1978).
  21. P. Manish, P. F. Conforti, and B. J. Garrison, "On the Role of Chemical Reactions in Initiating Ultraviolet Laser Ablation in Poly(Methyl Methacrylate)," J. Appl. Phys., 101 [10] 103113 (2007). https://doi.org/10.1063/1.2740340
  22. O. Harizanov, A. Harizanova, and T. Ivanova, "Formation and Characterization of Sol-Gel Barium Titanate," Mater. Sci. Eng., 106 [2] 191-95 (2004). https://doi.org/10.1016/j.mseb.2003.09.014
  23. R. Ashiri, A. Nemati, M. S. Ghamsari, and H. Aadelkhani, "Characterization of Optical Properties of Amorphous $BaTiO_3$ Nanothin Films," J. Non-Cryst. Solids, 355 [50-51] 2480 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.08.030
  24. R. Thomas, D. C. Dube, and M. N. Kamalasanan, S. Chandra, "Optical and Electrical Properties of $BaTiO_3$ Thin Films Prepared by Chemical Solution Deposition," Thin Solid Films, 346 [1-2] 212-25 (1999).
  25. H. X. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, Y. L. Lam, Y. C. Chan, and K. Pita, "Optical and Electrical Properties of Sol-Gel Derived $BaTiO_3$ Films on ITO Coated Glass," Mater. Chem. Phys., 63 [2] 174-77 (2000). https://doi.org/10.1016/S0254-0584(99)00222-9
  26. M. K. Gerges, M. Mostafa, and G. M. Rashwan, "Structural, Optical and Electrical Properties of $PbTiO_3$ Nanoparticles Prepared by Sol-Gel Method," IJLRET, 2 [4] 42-9 (2016).
  27. M. K. Gergs, G. A. Gamal, and M. Mostafa, "Dielectric Properties, Debye′s Relaxation Time and Activation Energy of $[(Pb_{1-x}Sr_x)_{1-1.5z}La_z]$ $TiO_3$ Ceramics," Egypt. J. Solids, 31 [1] 121-36 (2008).
  28. Y. Kobayashi, A. Nishikata, T. Tavase, and M. Konno, "Size Effect on Crystal Structures of Barium Titanate Nanoparticles Prepared by a Sol-Gel Method," J. Sol-Gel Sci. Technol., 29 [1] 49-55 (2004). https://doi.org/10.1023/B:JSST.0000016137.82633.52
  29. H. Reverón, C. Aymonier, A. Loppinet-Serani, C. Elissalde, M. Maglione, and F. Cansell, "Single-Step Synthesis of Well-Crystallized and Pure Barium Titanate Nanoparticles in Super Critical Fluids," Nanotechnology, 16 [8] 1137-43 (2005). https://doi.org/10.1088/0957-4484/16/8/026
  30. H. K. Jeong, Y. P. Lee, R. J. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, and Y. H. Lee, "Evidence of Graphitic AB Stacking Order of Graphite Oxides," J. Am. Chem. Soc., 30 [4] 1362-66 (2008).
  31. H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, and X. H. Xia, "A Green Approach to the Synthesis of Graphene Nanosheets," Nano Lett., 3 [9] 2653-59 (2009).
  32. L. Wang, H. Kang, K. Li, D. Xue, and C. Liu, "Phase Evolution of $BaTiO_3$ Nanoparticles: an Identification of $BaTi_2O_5$ Intermediate Phase in Calcined Stearic Acid Gel," J. Phys. Chem., 112 [7] 2382-88 (2008). https://doi.org/10.1021/jp076185e
  33. J. Polte, "Fundamental Growth Principles of Colloidal Metal Nanoparticles - A New Perspective," CrystEng-Comm, 17 [36] 6809-30 (2015). https://doi.org/10.1039/C5CE01014D
  34. P. Ganguly, A. K. Jha, and K. L. Deori, "Complex Impedance Studies of Tungsten-Bronze Structured $Ba_5SmTi_3Nb_7O_{30}$ Ferroelectric Ceramics," Solid State Commun., 146 [11] 472-77 (2008). https://doi.org/10.1016/j.ssc.2008.04.003

Cited by

  1. Microfluidic devices for synthesizing nanomaterials-a review vol.1, pp.3, 2018, https://doi.org/10.1088/2632-959x/abcca6