DOI QR코드

DOI QR Code

Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis

  • Kim, Minchul (Department of Systems Biotechnology, Chung-Ang University) ;
  • Cho, Yong-Joon (Korea Polar Research Institute) ;
  • Park, Minji (Department of Systems Biotechnology, Chung-Ang University) ;
  • Choi, Yoojeong (Department of Systems Biotechnology, Chung-Ang University) ;
  • Hwang, Sun Young (Haemaru Small Animal Research Institute) ;
  • Jung, Won Hee (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2018.10.15
  • Accepted : 2018.11.07
  • Published : 2018.11.28

Abstract

Malassezia pachydermatis is a commensal yeast found on the skin of dogs. However, M. pachydermatis is also considered an opportunistic pathogen and is associated with various canine skin diseases including otitis externa and atopic dermatitis, which usually require treatment using an azole antifungal drug, such as ketoconazole. In this study, we isolated a ketoconazole-resistant strain of M. pachydermatis, designated "KCTC 27587," from the external ear canal of a dog with otitis externa and analyzed its resistance mechanism. To understand the mechanism underlying ketoconazole resistance of the clinical isolate M. pachydermatis KCTC 27587, the whole genome of the yeast was sequenced using the PacBio platform and was compared with M. pachydermatis type strain CBS 1879. We found that a ~84-kb region in chromosome 4 of M. pachydermatis KCTC 27587 was tandemly quadruplicated. The quadruplicated region contains 52 protein coding genes, including the homologs of ERG4 and ERG11, whose overexpression is known to be associated with azole resistance. Our data suggest that the quadruplication of the ~84-kb region may be the cause of the ketoconazole resistance in M. pachydermatis KCTC 27587.

Keywords

References

  1. Hi ll PB, Lo A, Eden CA, Huntley S, Morey V, Ramsey S, et al. 2006. Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice. Vet. Rec. 158: 533-539. https://doi.org/10.1136/vr.158.16.533
  2. Saridomiche lakis MN, Farmaki R, Leontides LS, Koutinas AF. 2007. Aetiology of canine otitis externa: a retrospective study of 100 cases. Vet. Dermatol. 18: 341-347. https://doi.org/10.1111/j.1365-3164.2007.00619.x
  3. Korbelik J, Singh A, Rousseau J, Weese JS. 2018. Analysis of the otic mycobiota in dogs with otitis externa compared to healthy individuals. Vet. Dermatol. 29: 417-e138. https://doi.org/10.1111/vde.12665
  4. Negre A, Bensignor E, Guillot J. 2009. Evidence-based veterinary dermatology: a systematic review of interventions for Malassezia dermatitis in dogs. Vet. Dermatol. 20: 1-12. https://doi.org/10.1111/j.1365-3164.2008.00721.x
  5. I lahi A, Hadrich I , Goudjil S, Kongolo G, Chazal C, Leke A, et al. 2018. Molecular epidemiology of a Malassezia pachydermatis neonatal unit outbreak. Med. Mycol. 56: 69-77. https://doi.org/10.1093/mmy/myx022
  6. Chryssanthou E, Broberger U, Petrini B. 2001. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr. 90: 323-327. https://doi.org/10.1111/j.1651-2227.2001.tb00312.x
  7. Bajwa J. 2017. Canine Malassezia dermatitis. Can. Vet. J. 58: 1119-1121.
  8. Co le LK, Luu DH, Rajala-Schultz PJ, Meadows C, Torres AH. 2007. In vitro activity of an ear rinse containing tromethamine, EDTA, benzyl alcohol and 0.1% ketoconazole on Malassezia organisms from dogs with otitis externa. Vet. Dermatol. 18: 115-119. https://doi.org/10.1111/j.1365-3164.2007.00583.x
  9. Yoshida Y, Aoyama Y. 1987. Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes. Biochem. Pharmacol. 36: 229-235. https://doi.org/10.1016/0006-2952(87)90694-0
  10. Truan G, Epinat JC, Rougeulle C, Cullin C, Pompon D. 1994. Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene 142: 123-127. https://doi.org/10.1016/0378-1119(94)90366-2
  11. Jesus FP, Lautert C, Zanette RA, Mahl DL, Azevedo MI, Machado ML, et al. 2011. In vitro susceptibility of fluconazole-susceptible and -resistant isolates of Malassezia pachydermatis against azoles. Vet. Microbiol. 152: 161-164. https://doi.org/10.1016/j.vetmic.2011.04.027
  12. Wa tanabe S, Koike A, Kano R, Nagata M, Chen C, Hwang CY, et al. 2014. In vitro susceptibility of Malassezia pachydermatis isolates from canine skin with atopic dermatitis to ketoconazole and itraconazole in East Asia. J. Vet. Med. Sci. 76: 579-581. https://doi.org/10.1292/jvms.13-0433
  13. Iatta R, Puttilli MR, Immediato D, Otranto D, Cafarchia C. 2017. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses 60: 178-182. https://doi.org/10.1111/myc.12577
  14. M idgley G. 1989. The diversity of Pityrosporum (Malassezia) yeasts in vivo and in vitro. Mycopathologia 106: 143-153. https://doi.org/10.1007/BF00443055
  15. Walsh PS, Metzger DA, Higuchi R. 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 54: 134-139.
  16. Gupta AK, Boekhout T, Theelen B, Summerbell R, Batra R. 2004. Identification and typing of Malassezia species by amplified fragment length polymorphism and sequence analyses of the internal transcribed spacer and large-subunit regions of ribosomal DNA. J. Clin. Microbiol. 42: 4253-4260. https://doi.org/10.1128/JCM.42.9.4253-4260.2004
  17. Wayne P. 2008. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-; CLSI document M27-A3.
  18. van Burik JA, Schreckhise RW, White TC, Bowden RA, Myerson D. 1998. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Med. Mycol. 36: 299-303. https://doi.org/10.1080/02681219880000471
  19. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736. https://doi.org/10.1101/gr.215087.116
  20. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2016. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32: 767-769. https://doi.org/10.1093/bioinformatics/btv661
  21. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34: 2115-2122. https://doi.org/10.1093/molbev/msx148
  22. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  23. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359. https://doi.org/10.1038/nmeth.1923
  24. Liao Y, Smyth GK, Shi W. 2014. Feature counts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923-930. https://doi.org/10.1093/bioinformatics/btt656
  25. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. https://doi.org/10.1186/s13059-014-0550-8
  26. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}$CT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  27. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, et al. 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob. Agents Chemother. 48: 4405-4413. https://doi.org/10.1128/AAC.48.11.4405-4413.2004
  28. Hu G, Wang J, Choi J, Jung WH, Liu I, Litvintseva AP, et al. 2011. Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12: 526. https://doi.org/10.1186/1471-2164-12-526
  29. Sionov E, Lee H, Chang YC, Kwon-Chung KJ. 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6: e1000848. https://doi.org/10.1371/journal.ppat.1000848
  30. Feng W, Yang J, Xi Z, Qiao Z, Lv Y, Wang Y, et al. 2017. Mutations and/or overexpressions of ERG4 and ERG11 genes in clinical azoles-resistant isolates of Candida albicans. Microb. Drug Resist. 23: 563-570. https://doi.org/10.1089/mdr.2016.0095
  31. Gerwien F, Safyan A, Wisgott S, Brunke S, Kasper L, Hube B. 2017. The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition. Front. Microbiol. 8:1055. https://doi.org/10.3389/fmicb.2017.01055
  32. Saikia S, Oliveira D, Hu G, Kronstad J. 2014. Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect. Immun. 82: 839-850. https://doi.org/10.1128/IAI.01357-13
  33. Koszul R, Caburet S, Dujon B, Fischer G. 2004. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23: 234-243. https://doi.org/10.1038/sj.emboj.7600024
  34. Koszul R, Dujon B, Fischer G. 2006. Stability of large segmental duplications in the yeast genome. Genetics 172: 2211-2222. https://doi.org/10.1534/genetics.105.048058
  35. M cBride DJ, Etemadmoghadam D, Cooke SL, Alsop K, George J, Butler A, et al. 2012. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J. Pathol. 227: 446-455. https://doi.org/10.1002/path.4042
  36. Mehra RK, Garey JR, Winge DR. 1990. Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J. Biol. Chem. 265: 6369-6375.
  37. Aladjem MI, Koltin Y, Lavi S. 1988. Enhancement of copper resistance and CupI amplification in carcinogen-treated yeast cells. Mol. Gen. Genet. 211: 88-94. https://doi.org/10.1007/BF00338397

Cited by

  1. Advancing Functional Genetics Through Agrobacterium-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast Malassezia vol.212, pp.4, 2018, https://doi.org/10.1534/genetics.119.302329
  2. Malassezia Yeasts in Veterinary Dermatology: An Updated Overview vol.10, pp.None, 2018, https://doi.org/10.3389/fcimb.2020.00079
  3. Malassezia spp. Yeasts of Emerging Concern in Fungemia vol.10, pp.None, 2020, https://doi.org/10.3389/fcimb.2020.00370
  4. Antifungal Resistance Regarding Malassezia pachydermatis : Where Are We Now? vol.6, pp.2, 2020, https://doi.org/10.3390/jof6020093
  5. A Novel Virus Alters Gene Expression and Vacuolar Morphology in Malassezia Cells and Induces a TLR3-Mediated Inflammatory Immune Response vol.11, pp.5, 2018, https://doi.org/10.1128/mbio.01521-20
  6. Cutaneous Malassezia: Commensal, Pathogen, or Protector? vol.10, pp.None, 2018, https://doi.org/10.3389/fcimb.2020.614446
  7. Conventional therapy and new antifungal drugs against Malassezia infections vol.59, pp.3, 2021, https://doi.org/10.1093/mmy/myaa087
  8. Azole Resistance Mechanisms in Pathogenic Malassezia furfur vol.65, pp.5, 2018, https://doi.org/10.1128/aac.01975-20
  9. In vitro assays on the susceptibility of four species of nematophagous fungi to anthelmintics and chemical fungicides/antifungal drug vol.73, pp.2, 2018, https://doi.org/10.1111/lam.13462
  10. Prevalence and in vitro antifungal susceptibility of commensal yeasts in the external ear canal of cats vol.17, pp.1, 2018, https://doi.org/10.1186/s12917-021-02995-7