DOI QR코드

DOI QR Code

Understanding Comprehensive Transcriptional Response of Salmonella enterica spp. in Contact with Cabbage and Napa Cabbage

  • Lee, Hojun (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Seul I (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Sojung (Department of Molecular Science and Technology, Ajou University) ;
  • Nam, Eunwoo (Department of Molecular Science and Technology, Ajou University) ;
  • Yoon, Hyunjin (Department of Molecular Science and Technology, Ajou University)
  • Received : 2018.06.12
  • Accepted : 2018.09.18
  • Published : 2018.11.28

Abstract

Salmonellosis is commonly associated with meat and poultry products, but an increasing number of Salmonella outbreaks have been attributed to contaminated vegetables and fruits. Enteric pathogens including Salmonella enterica spp. can colonize diverse produce and persist for a long time. Considering that fresh vegetables and fruits are usually consumed raw without heat treatments, Salmonella contamination may subsequently lead to serious human infections. In order to understand the underlying mechanism of Salmonella adaptation to produce, we investigated the transcriptomics of Salmonella in contact with green vegetables, namely cabbage and napa cabbage. Interestingly, Salmonella pathogenicity island (SPI)-1 genes, which are required for Salmonella invasion into host cells, were up-regulated upon contact with vegetables, suggesting that SPI-1 may be implicated in Salmonella colonization of plant tissues as well as animal tissues. Furthermore, Salmonella transcriptomic profiling revealed several genetic loci that showed significant changes in their expression in response to vegetables and were associated with bacterial adaptation to unfavorable niches, including STM14_0818 and STM14_0817 (speF/potE), STM14_0880 (nadA), STM14_1894 to STM14_1892 (fdnGHI), STM14_2006 (ogt), STM14_2269, and STM14_2513 to STM14_2523 (cbi operon). Here, we show that nadA was required for bacterial growth under nutrient-restricted conditions, while the other genes were required for bacterial invasion into host cells. The transcriptomes of Salmonella in contact with cabbage and napa cabbage provided insights into the comprehensive bacterial transcriptional response to produce and also suggested diverse virulence determinants relevant to Salmonella survival and adaptation.

Keywords

References

  1. Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol. 5: 391.
  2. Yaron S, Romling U. 2014. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 7: 496-516. https://doi.org/10.1111/1751-7915.12186
  3. Ochman H, Groisman EA. 1995. The evolution of invasion by enteric bacteria. Can. J. Microbiol. 41: 555-561. https://doi.org/10.1139/m95-074
  4. Fukuyama S, Watanabe Y, Kondo N, Nishinomiya T, Kawamoto S, Isshiki K, et al. 2009. Efficiency of sodium hypochlorite and calcinated calcium in killing Escherichia coli O157:H7, Salmonella spp., and Staphylococcus aureus attached to freshly shredded cabbage. Biosci. Biotechnol. Biochem. 73: 9-14. https://doi.org/10.1271/bbb.70722
  5. Shirron N, Kisluk G, Zelikovich Y, Eivin I, Shimoni E, Yaron S. 2009. A comparative study assaying commonly used sanitizers for antimicrobial activity against indicator bacteria and a Salmonella Typhimurium strain on fresh produce. J. Food Prot. 72: 2413-2417. https://doi.org/10.4315/0362-028X-72.11.2413
  6. Lockhart WR, Holt JG. 1964. Numerical classification of Salmonella serotypes. J. Gen. Microbiol. 35: 115-124. https://doi.org/10.1099/00221287-35-1-115
  7. Jackson BR, Griffin PM, Cole D, Walsh KA, Chai SJ. 2013. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998-2008. Emerg. Infect. Dis. 19: 1239-1244. https://doi.org/10.3201/eid1908.121511
  8. Herman KM, Hall AJ, Gould LH. 2015. Outbreaks attributed to fresh leafy vegetables, United States, 1973-2012. Epidemio Infect. 143: 3011-3021. https://doi.org/10.1017/S0950268815000047
  9. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, et al. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75: 6076-6086. https://doi.org/10.1128/AEM.01084-09
  10. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  11. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. 2006. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7: 3. https://doi.org/10.1186/1471-2199-7-3
  12. Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11: R25. https://doi.org/10.1186/gb-2010-11-3-r25
  13. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. 2013. A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis. Brief Bioinform. 14: 671-683. https://doi.org/10.1093/bib/bbs046
  14. Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32: 896-902. https://doi.org/10.1038/nbt.2931
  15. Tatusov RL, Koonin EV, Lipman DJ. 1997. A genomic perspective on protein families. Science 278: 631-637. https://doi.org/10.1126/science.278.5338.631
  16. Perez-Llamas C, Lopez-Bigas N. 2011. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6: e19541. https://doi.org/10.1371/journal.pone.0019541
  17. Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai BS, Patil BS. 2010. Grapefruit bioactive limonoids modulate E . coli O157:H7 TTS S and biofilm. Int. J. Food Microbiol. 140: 109-116. https://doi.org/10.1016/j.ijfoodmicro.2010.04.012
  18. Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, et al. 2007. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS One 2: e1159. https://doi.org/10.1371/journal.pone.0001159
  19. Galan JE. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17: 53-86. https://doi.org/10.1146/annurev.cellbio.17.1.53
  20. McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. 2009. Salmonella takes control: effector-driven manipulation of the host. Currt. Opin. Microbiol. 12: 117-124. https://doi.org/10.1016/j.mib.2008.12.001
  21. Schikora A, Virlogeux-Payant I, Bueso E, Garcia AV, Nilau T, Charrier A, et al. 2011. Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 6: e24112. https://doi.org/10.1371/journal.pone.0024112
  22. Shirron N, Yaron S. 2011. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS One 6: e18855. https://doi.org/10.1371/journal.pone.0018855
  23. Espinel IC, Guerra PR, Jelsbak L. 2016. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium. Microb. Pathog. 95: 117-123. https://doi.org/10.1016/j.micpath.2016.03.008
  24. Jormakka M, Tornroth S, Byrne B, Iwata S. 2002. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295: 1863-1868. https://doi.org/10.1126/science.1068186
  25. Mackay WJ, Han S, Samson LD. 1994. DNA alkylation repair limits spontaneous base substitution mutations in Escherichia coli. J. Bacteriol. 176: 3224-3230. https://doi.org/10.1128/jb.176.11.3224-3230.1994
  26. Roessner CA, Warren MJ, Santander PJ, Atshaves BP, Ozaki S, Stolowich NJ, et al. 1992. Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. Identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis. FEBS Lett. 301: 73-78. https://doi.org/10.1016/0014-5793(92)80213-Z
  27. Paiva JB, Penha Filho RA, Junior AB, Lemos MV. 2011. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens. Braz. J. Microbiol. 42: 1409-1418. https://doi.org/10.1590/S1517-83822011000400024
  28. Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109: 1117-1131. https://doi.org/10.1111/j.1365-2672.2010.04756.x
  29. Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322 (Pt 3): 681-692. https://doi.org/10.1042/bj3220681
  30. Lamb C, Dixon RA. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
  31. Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV. 2004. Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 67: 2342-2353. https://doi.org/10.4315/0362-028X-67.10.2342
  32. Olaimat AN, Holley RA. 2012. Factors influencing the microbial safety of fresh produce: a review. Food Microbiol. 32: 1-19. https://doi.org/10.1016/j.fm.2012.04.016
  33. Kisluk G, Yaron S. 2012. Presence and persistence of Salmonella enterica serotype typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Appl. Environ. Microbiol. 78: 4030-4036. https://doi.org/10.1128/AEM.00087-12
  34. Markland SM, Shortlidge KL, Hoover DG, Yaron S, Patel J, Singh A, et al. 2013. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach. Zoonoses Public Health 60: 563-571. https://doi.org/10.1111/zph.12033
  35. Douesnard-Malo F, Daigle F. 2011. Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl. Environ. Microbiol. 77: 7640- 7646. https://doi.org/10.1128/AEM.00699-11
  36. Lieberman VM, Zhao IY, Schaffner DW, Danyluk MD, Harris LJ. 2015. Survival or growth of inoculated Escherichia coli O157:H7 and Salmonella on yellow onions (Allium cepa) under conditions simulating food service and consumer handling and storage. J. Food Prot. 78: 42-50. https://doi.org/10.4315/0362-028X.JFP-14-281
  37. Foster JW, Park YK, Penfound T, Fenger T, Spector MP. 1990. Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J. Bacteriol. 172: 4187-4196. https://doi.org/10.1128/jb.172.8.4187-4196.1990
  38. Foster JW, Moat AG. 1980. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol. Rev. 44: 83-105.
  39. Baianova Iu I, Trubachev IN. 1981. [Comparative evaluation of the vitamin composition of unicellular algae and higher plants grown under artificial conditions]. Prikl. Biokhim. Mikrobiol. 17: 400-407.
  40. Obradors N, Badia J, Baldoma L, Aguilar J. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2- propanediol in Salmonella typhimurium. J. Bacteriol. 170: 2159-2162. https://doi.org/10.1128/jb.170.5.2159-2162.1988
  41. Boronat A, Aguilar J. 1981. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. J. Bacteriol. 147: 181-185.
  42. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. 2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76: 403-416. https://doi.org/10.1128/IAI.01189-07
  43. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. 2007. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5: 2177-2189.
  44. Hung CC, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD, Frye JG, et al. 2013. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol. Microbiol. 87: 1045-1060. https://doi.org/10.1111/mmi.12149

Cited by

  1. Salmonella adapts to plants and their environment during colonization of tomatoes vol.95, pp.11, 2019, https://doi.org/10.1093/femsec/fiz152
  2. Mechanisms adopted by Salmonella to colonize plant hosts vol.99, pp.None, 2021, https://doi.org/10.1016/j.fm.2021.103833
  3. Transcriptomic responses of foodborne pathogens to the food matrix vol.42, pp.None, 2018, https://doi.org/10.1016/j.cofs.2021.02.019
  4. Transcriptomic responses of foodborne pathogens to the food matrix vol.42, pp.None, 2018, https://doi.org/10.1016/j.cofs.2021.02.019
  5. Acute Infectious Gastroenteritis: The Causative Agents, Omics-Based Detection of Antigens and Novel Biomarkers vol.8, pp.12, 2018, https://doi.org/10.3390/children8121112