DOI QR코드

DOI QR Code

Design, Optimization and Verification of 16S rRNA Oligonucleotide Probes of Fluorescence in-situ Hybridization for Targeting Clostridium spp. and Clostridium kluyveri

  • Hu, Lintao (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Huang, Jun (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Li, Hui (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Jin, Yao (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Wu, Chongde (College of Light Industry, Textile and Food Engineering, Sichuan University) ;
  • Zhou, Rongqing (College of Light Industry, Textile and Food Engineering, Sichuan University)
  • Received : 2018.05.08
  • Accepted : 2018.09.25
  • Published : 2018.11.28

Abstract

Fluorescence in-situ hybridization (FISH) is a common and popular method used to investigate microbial communities in natural and engineered environments. In this study, two specific 16S rRNA-targeted oligonucleotide probes, CLZ and KCLZ, were designed and verified to quantify the genus Clostridium and the species Clostridium kluyveri. The optimal concentration of hybridization buffer solution for both probes was 30% (w/v). The specificity of the designed probes was high due to the use of pellets from pure reference strains. Feasibility was tested using samples of Chinese liquor from the famed Luzhou manufacturing cellar. The effectiveness of detecting target cells appears to vary widely in different environments. In pit mud, the detection effectiveness of the target cell by probes CLZ and KCLZ was 49.11% and 32.14%, respectively. Quantitative analysis by FISH technique of microbes in pit mud and fermented grains showed consistency with the results detected by qPCR and PCR-DGGE techniques, which showed that the probes CLZ and KCLZ were suitable to analyze the biomass of Clostridium spp. and C. kluyveri during liquor fermentation. Therefore, this study provides a method for quantitative analysis of Clostridium spp. and C. kluyveri and monitoring their community dynamics in microecosystems.

Keywords

References

  1. Wu Q, Chen L, Xu Y. 2013. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int. J. Food Microbiol. 166: 323-330. https://doi.org/10.1016/j.ijfoodmicro.2013.07.003
  2. Wang Q, Zhang H, Liu X. 2016. Microbial community composition associated with Maotai liquor fermentation. J. Food. Sci. 81: 1485-1494. https://doi.org/10.1111/1750-3841.13319
  3. Wu YY, Guo SZ, Xue TR, Chen SR, Lu SY. 1993. Study ing on the brewing microbes of Chinese traditional Luzhouflavor liquor. Liquor Making Sci. Technol. 5: 30-35.
  4. Wu YY, Qi YP, Xue CJ, Guo SZ, Lu XJ. 1980. Microbial ecology distribution and anaerobic fermentation characteristics in the pit mud of Luzhou-flavor liquor. Microbiol. China 3: 108-112.
  5. Hu X, Du H, Ren C, Xu Y. 2016. Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese liquor fermentation pit muds. Appl. Environ. Microbiol. 82: 2506-2515. https://doi.org/10.1128/AEM.03409-15
  6. Tao Y, Wang X, Li X, Wei N, Jin H, Xu Z, et al. 2017. The functional potential and active populations of the pit mud microbiome for the production of Chinese strong-flavour liquor. Microb. Biotechnol. 10: 1603-1615. https://doi.org/10.1111/1751-7915.12729
  7. Zheng J, Liang R, Wu C, Zhou R, Liao X. 2014. Discrimination of different kinds of Luzhou-flavor raw liquors based on their volatile features. Food Res. Int. 56: 77-84. https://doi.org/10.1016/j.foodres.2013.12.011
  8. Fan W, Qian MC. 2005. Headspace solid phase microextraction and gas chomatography-olfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors. J. Agric. Food Chem. 53: 7931-7938. https://doi.org/10.1021/jf051011k
  9. Fan W, Qian MC. 2006. Characterization of aroma compounds of Chinese "Wuliangye" and "Jiannanchun" liquors by aroma extract dilution analysis. J. Agric. Food Chem. 54: 2695-2704. https://doi.org/10.1021/jf052635t
  10. Fan W, Qian MC. 2006. Identification of aroma compounds in Chinese 'Yanghe Daqu' liquor by normal phase chromatography fractionation followed by gas chromatography/ olfactometry. Flavour Fragrance J. 21: 333-342. https://doi.org/10.1002/ffj.1621
  11. Guth H. 1997. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 45: 3027-3032. https://doi.org/10.1021/jf970280a
  12. Hu XL, Du H, Xu Y. 2015. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production. Int. J. Food Microbiol. 214: 116-122. https://doi.org/10.1016/j.ijfoodmicro.2015.07.032
  13. Tao Y, Hu X, Zhu X, Jin H, Xu Z, Tang Q, et al. 2016. Production of butyrate from lactate by a newly isolated Clostridium sp. BPY5. Appl. Biochem. Biotechnol. 179: 361-374. https://doi.org/10.1007/s12010-016-1999-6
  14. Hu XL, Wang HY, Wu Q, Xu Y. 2014. Development, validation and application of specific primers for analyzing the clostridial diversity in dark fermentation pit mud by PCR-DGGE. Bioresour. Technol. 163: 40-47. https://doi.org/10.1016/j.biortech.2014.04.008
  15. Liu M, Zhao K, Tang Y, Ren D, Yao W, Tian X, et al. 2015. Analysis of Clostridium cluster I community diversity in pit mud used in manufacture of Chinese Luzhou-flavor liquor. Food. Sci. Biotechnol. 24: 995-1000. https://doi.org/10.1007/s10068-015-0127-7
  16. Rudolf Amann, Bernhard M Fuchs, Behrens S. 2001. The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol. 12: 231-236. https://doi.org/10.1016/S0958-1669(00)00204-4
  17. Moter A, Gobel UB. 2000. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41: 85-112. https://doi.org/10.1016/S0167-7012(00)00152-4
  18. Karakashev D, Batstone DJ, Angelidaki I. 2005. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71: 331-338. https://doi.org/10.1128/AEM.71.1.331-338.2005
  19. Xia Y, Masse DI, McAllister TA, Kong Y, Seviour R, Beaulieu C. 2012. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes. Bioresour. Technol. 110: 111-119. https://doi.org/10.1016/j.biortech.2012.01.107
  20. Jupraputtasri W, Boonapatcharoen N, Cheevadhanarak S, Chaiprasert P, Tanticharoen M, Techkarnjanaruk S. 2005. Use of an alternative Archaea-specific probe for methanogen detection. J. Microbiol. Methods 61: 95-104. https://doi.org/10.1016/j.mimet.2004.11.017
  21. Crocetti G, Murto M, Bjornsson L. 2006. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J. Microbiol. Methods 65: 194-201. https://doi.org/10.1016/j.mimet.2005.07.007
  22. Li H, Huang J, Liu X, Zhou R, Ding X, Xiang Q, et al. 2016. Characterization of interphase microbial community in Luzhou-flavored liquor manufacturing pits of various ages by polyphasic detection methods. J. Microbiol. Biotechn. 27: 130-140.
  23. Zhang L, Zhou R, Niu M, Zheng J, Wu C. 2015. Difference of microbial community stressed in artificial pit muds for Luzhou-flavour liquor brewing revealed by multiphase culture-independent technology. J. Appl. Microbiol. 119: 1345-1356. https://doi.org/10.1111/jam.12943
  24. Ding X, Wu C, Huang J, Li H, Zhou R. 2014. Eubacterial and archaeal community characteristics in the man-made pit mud revealed by combined PCR-DGGE and FISH analyses. Food Res. Int. 62: 1047-1053. https://doi.org/10.1016/j.foodres.2014.05.045
  25. Wu C, Ding X, Huang J, Zhou R. 2015. Characterization of archaeal community in Luzhou-flavour pit mud. J. I. Brewing. 121: 597-602. https://doi.org/10.1002/jib.255
  26. Weimer PJ, Stevenson DM. 2012. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl. Microbiol. Biotechnol. 94: 461-466. https://doi.org/10.1007/s00253-011-3751-z
  27. Ding X, Wu C, Huang J, Zhou R. 2015. Interphase microbial community characteristics in the fermentation cellar of Chinese Luzhou-flavor liquor determined by PLFA and DGGE profiles. Food Res. Int. 72: 16-24. https://doi.org/10.1016/j.foodres.2015.03.018
  28. Bertilsson S, Cavanaugh CM, Polz MF. 2002. Sequencingindependent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl. Environ. Microbiol. 68: 6077-6086. https://doi.org/10.1128/AEM.68.12.6077-6086.2002
  29. Wang C, Esteve-Zarzoso B, Mas A. 2014. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int. J. Food Microbiol. 191: 1-9. https://doi.org/10.1016/j.ijfoodmicro.2014.08.014
  30. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotide reveals location of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65: 1280-1288.
  31. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925.
  32. Zhou J, Mary AB, Tiedje JM. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.
  33. Lee C, Kim J, Shin SG, Hwang S. 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273-280. https://doi.org/10.1016/j.jbiotec.2005.11.014
  34. Whelan JA, Russell NB, Whelan MA. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278: 261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
  35. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: D590-596.
  36. Bouvier T, Del Giorgio PA. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol. Ecol. 44: 3-15. https://doi.org/10.1016/S0168-6496(02)00461-0
  37. Stahl D. 1991. Development and application of nucleic acid probes. Nucleic Acid Techniques in Bacterial Systematics. 8: 205-248.
  38. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15: 593-600. https://doi.org/10.1016/S0723-2020(11)80121-9
  39. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63: 2884-2896.
  40. Knutsson R, Lofstrom C, Grage H, Hoorfar J, Radstrom P. 2002. Modeling of 5' nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for salmonella enterica. J. Clin. Microbiol. 40: 52-60. https://doi.org/10.1128/JCM.40.1.52-60.2002
  41. Klein D. 2002. Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8: 257-260. https://doi.org/10.1016/S1471-4914(02)02355-9
  42. Kim J, Lim J, Lee C. 2013. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations. Biotechnol. Adv. 31: 1358-1373. https://doi.org/10.1016/j.biotechadv.2013.05.010
  43. Fittipaldi M, Codony F, Adrados B, Camper AK, Morato J. 2011. Viable real-time PCR in environmental samples: can all data be interpreted directly. Microb. Ecol. 61: 7-12. https://doi.org/10.1007/s00248-010-9719-1
  44. Yu Y, Lee C, Kim J, Hwang S. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89: 670-679. https://doi.org/10.1002/bit.20347
  45. Bornstein BT, Barker HA. 1948. The nutrition of Clostridium kluyveri. J. Bacteriol. 55: 223-230.

Cited by

  1. Evolving the core microbial community in pit mud based on bioturbation of fortified Daqu vol.67, pp.5, 2021, https://doi.org/10.1139/cjm-2020-0290