DOI QR코드

DOI QR Code

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Gun (School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
  • Received : 2018.07.09
  • Accepted : 2018.08.20
  • Published : 2018.11.28

Abstract

The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Keywords

References

  1. Campoy S, Adrio JL. 2017. Antifungals. Biochem. Pharmacol. 133: 86-96. https://doi.org/10.1016/j.bcp.2016.11.019
  2. Perfect JR. 2017. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov. 16: 603-616. https://doi.org/10.1038/nrd.2017.46
  3. Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. 2014. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents. 43: 395-402. https://doi.org/10.1016/j.ijantimicag.2013.12.009
  4. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4: 165rv113.
  5. Shor E, Chauhan N. 2015. A case for two-component signaling systems as antifungal drug targets. PLoS Pathog. 11: e1004632. https://doi.org/10.1371/journal.ppat.1004632
  6. Pierce CG, Srinivasan A, Ramasubramanian AK, Lopez- Ribot JL. 2015. From biology to drug development: new approaches to combat the threat of fungal biofilms. Microbiol. Spectr. 3(3).
  7. Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. 2017. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 8: 186-197. https://doi.org/10.1080/21505594.2016.1201250
  8. Bassetti M, Garnacho-Montero J, Calandra T, Kullberg B, Dimopoulos G, Azoulay E, et al. 2017. Intensive care medicine research agenda on invasive fungal infection in critically ill patients. Intensive Care Med. 43: 1225-1238. https://doi.org/10.1007/s00134-017-4731-2
  9. Fernandez J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, et al. 2017. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut. 67(10): 1870-1880. https://doi.org/10.1136/gutjnl-2017-314240
  10. Biswas C, Zuo X, Chen SC, Schibeci SD, Forwood JK, Jolliffe KA, et al. 2014. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genet. Biol. 67: 71-81. https://doi.org/10.1016/j.fgb.2014.04.003
  11. Nett JE, Andes DR. 2016. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. North Am. 30: 51-83. https://doi.org/10.1016/j.idc.2015.10.012
  12. Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, et al. 2014. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem. J. 460: 223-235. https://doi.org/10.1042/BJ20140010
  13. Parente-Rocha JA, Bailao AM, Amaral AC, Taborda CP, Paccez JD, Borges CL, et al. 2017. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm. 2017: 9870679.
  14. Fujita K, Tatsumi M, Ogita A, Kubo I, Tanaka T. 2014. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J. 281: 1304-1313. https://doi.org/10.1111/febs.12706
  15. Belenky P, Camacho D, Collins JJ. 2013. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 3: 350-358. https://doi.org/10.1016/j.celrep.2012.12.021
  16. Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. 2018. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol. 66: 2-13. https://doi.org/10.1111/lam.12820
  17. Teixeira-Santos R, Ricardo E, Guerreiro SG, Costa-de- Oliveira S, Rodrigues AG, Pina-Vaz C. 2015. New insights regarding yeast survival following exposure to liposomal amphotericin B. Antimicrob. Agents Chemother. 59: 6181-6187. https://doi.org/10.1128/AAC.00575-15
  18. Hayes BM, Anderson MA, Traven A, van der Weerden NL, Bleackley MR. 2014. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cell Mol. Life Sci. 71: 2651-2666. https://doi.org/10.1007/s00018-014-1573-8
  19. Grudzinski W, Sagan J, Welc R, Luchowski R, Gruszecki WI. 2016. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci. Rep. 6: 32780. https://doi.org/10.1038/srep32780
  20. Chudzik B, Koselski M, Czurylo A, Trebacz K, Gagos M. 2015. A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions. Eur. Biophys. J. 44: 77-90. https://doi.org/10.1007/s00249-014-1003-8
  21. Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. 2008. Drug-induced apoptosis in yeast. Biochim. Biophys. Acta 1783: 1436-1448. https://doi.org/10.1016/j.bbamcr.2008.01.005
  22. Al-Dhaheri RS, Douglas LJ. 2010. Apoptosis in Candida biofilms exposed to amphotericin B. J. Med. Microbiol. 59: 149-157. https://doi.org/10.1099/jmm.0.015784-0
  23. Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332. https://doi.org/10.1073/pnas.2332326100
  24. Guirao-Abad JP, Sanchez-Fresneda R, Alburquerque B, Hernandez JA, Arguelles JC. 2017. ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. Int. J. Med. Microbiol. 307: 241-248. https://doi.org/10.1016/j.ijmm.2017.03.005
  25. Folk A, Balta C, Herman H, Ivan A, Boldura OM, Paiusan L, et al. 2017. Flucytosine and amphotericin B coadministration induces dose-related renal injury. Dose Response 15: 1559325817703461.
  26. Mousavi SA, Robson GD. 2004. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 150: 1937-1945. https://doi.org/10.1099/mic.0.26830-0
  27. Prasad R, Shah AH, Rawal MK. 2016. Antifungals: mechanism of action and drug resistance. Adv. Exp. Med. Biol. 892: 327-349.
  28. Allen D, Wilson D, Drew R, Perfect J. 2015. Azole antifungals: 35 years of invasive fungal infection management. Exp. Rev. Anti Infect. Ther. 13: 787-798. https://doi.org/10.1586/14787210.2015.1032939
  29. Delattin N, Cammue BP, Thevissen K. 2014. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med. Chem. 6: 77-90. https://doi.org/10.4155/fmc.13.189
  30. Rautenbach M, Troskie AM, Vosloo JA. 2016. Antifungal peptides: To be or not to be membrane active. Biochimie 130: 132-145. https://doi.org/10.1016/j.biochi.2016.05.013
  31. de Oliveira Pereira F, Mendes JM, de Oliveira Lima E. 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 51: 507-513. https://doi.org/10.3109/13693786.2012.742966
  32. Portet T, Camps i Febrer F, Escoffre JM, Favard C, Rols MP, Dean DS. 2009. Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys. J. 96: 4109-4121. https://doi.org/10.1016/j.bpj.2009.02.063
  33. Lee W, Lee DG. 2018. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic. Res. 52: 39-50. https://doi.org/10.1080/10715762.2017.1407412
  34. Katragkou A, Alexander EL, Eoh H, Raheem SK, Roilides E, Walsh TJ. 2016. Effects of fluconazole on the metabolomic profile of Candida albicans. J. Antimicrob. Chemother. 71: 635-640. https://doi.org/10.1093/jac/dkv381
  35. Mahl CD, Behling CS, Hackenhaar FS, de Carvalho e Silva MN, Putti J, Salomon TB, et al. 2015. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagn. Microbiol. Infect. Dis. 82: 203-208. https://doi.org/10.1016/j.diagmicrobio.2015.03.019
  36. Lee W, Lee DG. 2018. A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology 164: 194-204. https://doi.org/10.1099/mic.0.000589
  37. Feldmesser M, Kress Y, Mednick A, Casadevall A. 2000. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J. Infect. Dis. 182: 1791-1795. https://doi.org/10.1086/317614
  38. Hao B, Cheng S, Clancy CJ, Nguyen MH. 2013. Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis. Antimicrob. Agents Chemother. 57: 326-332. https://doi.org/10.1128/AAC.01366-12
  39. Shirazi F, Kontoyiannis DP. 2015. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin nonsusceptible isolates. Virulence 6: 385-394. https://doi.org/10.1080/21505594.2015.1027479
  40. Lakshmaiah Narayana J, Chen JY. 2015. Antimicrobial peptides: possible anti-infective agents. Peptides 72: 88-94. https://doi.org/10.1016/j.peptides.2015.05.012
  41. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2014. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 5: a019752.
  42. Cui J, Ren B, Tong Y, Dai H, Zhang L. 2015. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6: 362-371. https://doi.org/10.1080/21505594.2015.1039885
  43. Hagiwara D, Watanabe A, Kamei K, Goldman GH. 2016. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front Microbiol. 7: 1382.
  44. Kanafani ZA, Perfect JR. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120-128. https://doi.org/10.1086/524071
  45. Shields RK, Nguyen MH, Press EG, Cumbie R, Driscoll E, Pasculle AW, et al. 2015. Rate of FKS mutations among consecutive Candida isolates causing bloodstream infection. Antimicrob. Agents Chemother. 59: 7465-7470. https://doi.org/10.1128/AAC.01973-15
  46. Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. 2014. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob. Agents Chemother. 58: 4690-4696. https://doi.org/10.1128/AAC.03255-14
  47. Fekkar A, Meyer I, Brossas JY, Dannaoui E, Palous M, Uzunov M, et al. 2013. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob. Agents Chemother. 57: 2380-2382. https://doi.org/10.1128/AAC.02037-12
  48. Jensen RH, Johansen HK, Arendrup MC. 2013. Stepwise development of a homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida tropicalis. Antimicrob. Agents Chemother. 57: 614-617. https://doi.org/10.1128/AAC.01193-12
  49. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, et al. 2012. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 56: 208-217. https://doi.org/10.1128/AAC.00683-11
  50. Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. 2013. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 11: e1001692. https://doi.org/10.1371/journal.pbio.1001692
  51. Shlezinger N, Goldfinger N, Sharon A. 2012. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front. Oncol. 2: 97.
  52. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU. 2004. Apoptosis in yeast. Curr. Opin. Microbiol. 7: 655-660. https://doi.org/10.1016/j.mib.2004.10.012
  53. Murgia M, Rizzuto R. 2015. Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 58: 11-17. https://doi.org/10.1016/j.ceca.2014.11.001
  54. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F. 2010. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 17: 763-773. https://doi.org/10.1038/cdd.2009.219
  55. Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582. https://doi.org/10.1111/j.1365-2958.2007.05926.x
  56. Shirazi F, Kontoyiannis DP. 2013. The calcineurin pathway inhibitor tacrolimus enhances the in vitro activity of azoles against Mucorales via apoptosis. Eukaryot Cell. 12: 1225-1234. https://doi.org/10.1128/EC.00138-13
  57. Eisenberg T, Buttner S, Kroemer G, Madeo F. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023. https://doi.org/10.1007/s10495-007-0758-0
  58. Mazzoni C, Falcone C. 2008. Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1320-1327. https://doi.org/10.1016/j.bbamcr.2008.02.015
  59. Costa V, Moradas-Ferreira P. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246. https://doi.org/10.1016/S0098-2997(01)00012-7
  60. Ludovico P, Madeo F, Silva M. 2005. Yeast programmed cell death: an intricate puzzle. IUBMB Life 57: 129-135. https://doi.org/10.1080/15216540500090553
  61. Perrone GG, Tan SX, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  62. Leger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. 2015. The metacaspase (Mca1p) has a dual role in farnesolinduced apoptosis in Candida albicans. Mol. Cell Proteomics 14: 93-108. https://doi.org/10.1074/mcp.M114.041210
  63. Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. 2012. Detection of apoptosis by TUNEL assay. Methods Mol. Biol. 887: 41-47.
  64. Spitzer M, Robbins N, Wright GD. 2017. Combinatorial strategies for combating invasive fungal infections. Virulence 8: 169-185. https://doi.org/10.1080/21505594.2016.1196300
  65. Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E. 2010. In vitro activity of antifungal combinations against Candida albicans biofilms. J. Antimicrob. Chemother. 65: 271-274. https://doi.org/10.1093/jac/dkp429
  66. Liao Y, Yang S, Cong L, Lu X, Ao J, Yang R. 2014. In vitro activities of antifungal combinations against biofilms and planktonic forms of clinical Trichosporon asahii isolates. Antimicrob. Agents Chemother. 58: 7615-7616. https://doi.org/10.1128/AAC.03817-14
  67. Shuford JA, Piper KE, Steckelberg JM, Patel R. 2007. In vitro biofilm characterization and activity of antifungal agents alone and in combination against sessile and planktonic clinical Candida albicans isolates. Diagn. Microbiol. Infect. Dis. 57: 277-281. https://doi.org/10.1016/j.diagmicrobio.2006.09.004
  68. Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, Lopez-Ribot JL. 2003. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob. Agents Chemother. 47: 3657-3659. https://doi.org/10.1128/AAC.47.11.3657-3659.2003
  69. Zeng R, L i M, C hen Q, W ang L, Z han P, W ang C, et al. 2014. In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Antimicrob. Agents Chemother. 58: 1443-1450. https://doi.org/10.1128/AAC.01007-13
  70. Garbati MA, Alasmari FA, Al-Tannir MA, Tleyjeh IM. 2012. The role of combination antifungal therapy in the treatment of invasive aspergillosis: a systematic review. Int. J. Infect. Dis. 16: e76-81.
  71. Cools TL, Struyfs C, Cammue BP, Thevissen K. 2017. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 12: 441-454. https://doi.org/10.2217/fmb-2016-0181
  72. Spanakis EK, Aperis G, Mylonakis E. 2006. New agents for the treatment of fungal infections: clinical efficacy and gaps in coverage. Clin. Infect. Dis. 43: 1060-1068. https://doi.org/10.1086/507891
  73. van der Weerden NL, Bleackley MR, Anderson MA. 2013. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol. Life Sci. 70: 3545-3570. https://doi.org/10.1007/s00018-013-1260-1
  74. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, et al. 2014. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 21: 1639-1647. https://doi.org/10.1016/j.chembiol.2014.10.009
  75. Libardo MDJ, Wang TY, Pellois JP, Angeles-Boza AM. 2017. How does membrane oxidation affect cell delivery and cell killing? Trends Biotechnol. 35: 686-690. https://doi.org/10.1016/j.tibtech.2017.03.015
  76. Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17.
  77. Shivange G, Monisha M, Nigam R, Kodipelli N, Anindya R. 2016. RecA stimulates AlkB-mediated direct repair of DNA adducts. Nucleic Acids Res. 44: 8754-8763. https://doi.org/10.1093/nar/gkw611
  78. Roy RN, Lomakin IB, Gagnon MG, Steitz TA. 2015. The mechanism of inhibition of protein synthesis by the prolinerich peptide oncocin. Nat. Struct. Mol. Biol. 22: 466-469. https://doi.org/10.1038/nsmb.3031
  79. Baev D, Li XS, Dong J, Keng P, Edgerton M. 2002. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect. Immun. 70: 4777-4784. https://doi.org/10.1128/IAI.70.9.4777-4784.2002
  80. Serhan G, Stack CM, Perrone GG, Morton CO. 2014. The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Ann. Clin. Microbiol. Antimicrob. 13: 18. https://doi.org/10.1186/1476-0711-13-18
  81. Semis R, Kagan S, Berdicevsky I, Polacheck I, Segal E. 2013. Mechanism of activity and toxicity of Nystatin-Intralipid. Med. Mycol. 51: 422-431. https://doi.org/10.3109/13693786.2012.731712
  82. Bendaha H, Yu L, Touzani R, Souane R, Giaever G, Nislow C, et al. 2011. New azole antifungal agents with novel modes of action: synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem. 46: 4117-4124. https://doi.org/10.1016/j.ejmech.2011.06.012
  83. Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. 2010. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 65: 694-700. https://doi.org/10.1093/jac/dkq019
  84. Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. 1999. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 43: 2635-2641. https://doi.org/10.1128/AAC.43.11.2635
  85. Wakabayashi H, Abe S, Okutomi T, Tansho S, Kawase K, Yamaguchi H. 1996. Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol. Immunol. 40: 821-825. https://doi.org/10.1111/j.1348-0421.1996.tb01147.x
  86. Vriens K, Cools TL, Harvey PJ, Craik DJ, Spincemaille P, Cassiman D, et al. 2015. Synergistic activity of the plant defensin hsafp1 and caspofungin against Candida albicans biofilms and planktonic cultures. PLoS One 10: e0132701. https://doi.org/10.1371/journal.pone.0132701
  87. Vriens K, Cools TL, Harvey PJ, Craik DJ, Braem A, Vleugels J, et al. 2016. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 75: 71-79. https://doi.org/10.1016/j.peptides.2015.11.001
  88. Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516. https://doi.org/10.1016/j.febslet.2009.07.004
  89. Tabbene O, Azaiez S, Di Grazia A, Karkouch I, Ben Slimene I, Elkahoui S, et al. 2016. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J. Appl. Microbiol. 120: 289-300. https://doi.org/10.1111/jam.13030
  90. Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, Da Cunha M, Gomes VM. 2016. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol. 16: 12. https://doi.org/10.1186/s12866-016-0626-6
  91. Lee J, L ee D, C hoi H, K im HH, K im H , Hwang JS, et al. 2014. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep. 47: 625-630. https://doi.org/10.5483/BMBRep.2014.47.11.262
  92. Lee J, Hwang J S, Hwang I S, Cho J , Lee E, K im Y , et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311. https://doi.org/10.1016/j.freeradbiomed.2012.03.012
  93. Andra J, Jakovkin I, Grotzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, et al. 2008. Structure and mode of action of the antimicrobial peptide arenicin. Biochem. J. 410: 113-122. https://doi.org/10.1042/BJ20071051
  94. Cho J, Lee DG. 2011. The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis. Biochim. Biophys. Acta 1810: 1246-1251. https://doi.org/10.1016/j.bbagen.2011.08.011
  95. Park C, Lee DG. 2009. Fungicidal effect of antimicrobial peptide arenicin-1. Biochim. Biophys. Acta 1788: 1790-1796. https://doi.org/10.1016/j.bbamem.2009.06.008
  96. Yun J, Lee DG. 2 016. Cecropin A-induced a poptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life 68: 652-662. https://doi.org/10.1002/iub.1527
  97. Wang G. 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283: 32637-32643. https://doi.org/10.1074/jbc.M805533200
  98. Tsai PW, Cheng YL, Hsieh WP, Lan CY. 2014. Responses of Candida albicans to the human antimicrobial peptide LL-37. J. Microbiol. 52: 581-589. https://doi.org/10.1007/s12275-014-3630-2
  99. Lee J, Lee DG. 2014. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol. Lett. 355: 36-42. https://doi.org/10.1111/1574-6968.12450
  100. Hwang B, Hwang JS, Lee J, Kim JK, Kim SR, Kim Y, et al. 2011. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93. https://doi.org/10.1016/j.bbrc.2011.03.125
  101. Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, et al. 2011. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J. Biol. Chem. 286: 41296-41311. https://doi.org/10.1074/jbc.M111.269225
  102. Lee J, Hwang JS, Hwang B, Kim JK, Kim SR, Kim Y, et al. 2010. Influence of the papiliocin peptide derived from Papilio xuthus on the perturbation of fungal cell membranes. FEMS Microbiol. Lett. 311: 70-75. https://doi.org/10.1111/j.1574-6968.2010.02073.x
  103. Choi H, Hwang JS, Lee DG. 2014. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Insect. Mol. Biol. 23: 788-799. https://doi.org/10.1111/imb.12124
  104. Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 1848:634-642. https://doi.org/10.1016/j.bbamem.2014.11.016
  105. Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21:856-865. https://doi.org/10.1007/s10495-016-1254-1

Cited by

  1. Design, Synthesis and Biopharmacological Profile Evaluation of New 2-((4- Chlorophenoxy)Methyl)-N-(Arylcarbamothioyl)Benzamides with Broad Spectrum Antifungal Activity vol.23, pp.12, 2018, https://doi.org/10.2174/1385272823666190621162950
  2. Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane vol.104, pp.8, 2018, https://doi.org/10.1007/s00253-020-10462-w
  3. Current and promising pharmacotherapeutic options for candidiasis vol.22, pp.7, 2018, https://doi.org/10.1080/14656566.2021.1873951
  4. Rondonin: antimicrobial properties and mechanism of action vol.11, pp.9, 2018, https://doi.org/10.1002/2211-5463.13253
  5. Antimicrobial peptides: mechanism of action, activity and clinical potential vol.8, pp.1, 2018, https://doi.org/10.1186/s40779-021-00343-2
  6. Synergistic activity of Pelargonium capitatum and Cymbopogon martini essential oils against C. albicans vol.35, pp.24, 2018, https://doi.org/10.1080/14786419.2020.1810037