References
- Lunt SY and Vander Heiden MG (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu Rev Cell Dev Biol 27, 441-464 https://doi.org/10.1146/annurev-cellbio-092910-154237
- Kuznetsov AV, Hermann M, Saks V, Hengster P and Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41, 1928-1939 https://doi.org/10.1016/j.biocel.2009.03.007
- Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217, 2235-2246 https://doi.org/10.1083/jcb.201803152
- Novello F and McLean P (1968) The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J 107, 775-791 https://doi.org/10.1042/bj1070775
- Marin-Valencia I, Cho SK, Rakheja D et al (2012) Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed 25, 1177-1186 https://doi.org/10.1002/nbm.2787
- Zhang H, Menzies KJ and Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development 145, dev143420 https://doi.org/10.1242/dev.143420
- Teslaa T and Teitell MA (2015) Pluripotent stem cell energy metabolism: an update. EMBO J 34, 138-153 https://doi.org/10.15252/embj.201490446
- Lees JG, Gardner DK and Harvey AJ (2017) Pluripotent stem cell metabolism and mitochondria: beyond ATP. Stem Cells Int 2017, 2874283
- Xu X, Duan S, Yi F, Ocampo A, Liu GH and Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18, 325-332 https://doi.org/10.1016/j.cmet.2013.06.005
- Suomalainen A and Battersby BJ (2018) Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19, 77-92 https://doi.org/10.1038/nrm.2017.66
- Ott M, Amunts A and Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85, 77-101 https://doi.org/10.1146/annurev-biochem-060815-014334
- Roger AJ, Munoz-Gomez SA and Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27, R1177-R1192 https://doi.org/10.1016/j.cub.2017.09.015
- Dyall SD, Brown MT and Johnson PJ (2004) Ancient Invasions: From endosymbionts to organelles. Science 304, 253-257 https://doi.org/10.1126/science.1094884
- Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 https://doi.org/10.1038/290457a0
- Lightowlers RN, Rozanska A and Chrzanowska- Lightowlers ZM (2014) Mitochondrial protein synthesis: Figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 588, 2496-2503 https://doi.org/10.1016/j.febslet.2014.05.054
- Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471-483 e10 https://doi.org/10.1016/j.cell.2016.09.003
- Rampelt H and Pfanner N (2016) Coordination of two genomes by mitochondrial translational plasticity. Cell 167, 308-310 https://doi.org/10.1016/j.cell.2016.09.042
- Haynes CM, Yang Y, Blais SP, Neubert TA and Ron D (2010) The Matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37, 529-540 https://doi.org/10.1016/j.molcel.2010.01.015
- Larsson NG (2010) Somatic Mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79, 683-706 https://doi.org/10.1146/annurev-biochem-060408-093701
- Fox TD (2012) Mitochondrial protein synthesis, import, and assembly. Genetics 192, 1203-1234 https://doi.org/10.1534/genetics.112.141267
- Dolezal P, Likic V, Tachezy J and Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313, 314-318
- Wiedemann N and Pfanner N (2017) mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86, 685-714 https://doi.org/10.1146/annurev-biochem-060815-014352
- Rhee HW, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331 https://doi.org/10.1126/science.1230593
- Lee SY, Kang MG, Park JS, Lee G, Ting AY and Rhee HW (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15, 1837-1847 https://doi.org/10.1016/j.celrep.2016.04.064
- Lee SY, Kang MG, Shin S et al (2017) Architecture mapping of the inner mitochondrial membrane proteome by chemical tools in live cells. J Am Chem Soc 139, 3651-3662 https://doi.org/10.1021/jacs.6b10418
- Han S, Udeshi ND, Deerinck TJ et al (2017) Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem Biol 24, 404-414 https://doi.org/10.1016/j.chembiol.2017.02.002
- Hung V, Zou P, Rhee HW et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332-341 https://doi.org/10.1016/j.molcel.2014.06.003
- Hung V, Lam SS, Udeshi ND et al (2017) Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. Elife 6, 1-38
- Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884 https://doi.org/10.1038/nrm3013
- Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79-99 https://doi.org/10.1146/annurev.cellbio.22.010305.104638
- Chen H and Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2, R283-289
- Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958-966 https://doi.org/10.1038/ncb1907
- Chang DTW, Honick AS and Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26, 7035-7045 https://doi.org/10.1523/JNEUROSCI.1012-06.2006
- Fransson A, Ruusala A and Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344, 500-510 https://doi.org/10.1016/j.bbrc.2006.03.163
- Calvo SE, Clauser KR and Mootha VK (2016) MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44, D1251-1257 https://doi.org/10.1093/nar/gkv1003
- Smith AC and Robinson AJ (2016) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44, D1258-1261 https://doi.org/10.1093/nar/gkv1001
- Prokisch H and Ahting U (2007) MitoP2, an integrated database for mitochondrial proteins. Methods Mol Biol 372, 573-586
- Cotter D, Guda P, Fahy E and Subramaniam S (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32, D463-467 https://doi.org/10.1093/nar/gkh048
- Stiles J and Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20, 327-348 https://doi.org/10.1007/s11065-010-9148-4
- Fuentealba LC, Rompani SB, Parraguez JI et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161, 1644-1655 https://doi.org/10.1016/j.cell.2015.05.041
- Li G, Fang L, Fernandez G and Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78, 658-672 https://doi.org/10.1016/j.neuron.2013.03.019
- Sorrells SF, Paredes MF, Cebrian-Silla A et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377-381 https://doi.org/10.1038/nature25975
- Boldrini M, Fulmore CA, Tartt AN et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589-599 https://doi.org/10.1016/j.stem.2018.03.015
- Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell 23, 25-30 https://doi.org/10.1016/j.stem.2018.04.004
- Beckervordersandforth R, Zhang C and Lie DC (2015) Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb Perspect Biol 7, a018879 https://doi.org/10.1101/cshperspect.a018879
- Martynoga B, Drechsel D, Guillemot F et al (2012) Molecular control of neurogenesis : A view from the mammalian cerebral cortex molecular control of neurogenesis : A view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4, a008359
- Hirabayashi Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791-2801 https://doi.org/10.1242/dev.01165
- Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375 https://doi.org/10.1038/nature04108
- Knobloch M, Pilz GA, Ghesquiere B et al (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20, 2144-2155 https://doi.org/10.1016/j.celrep.2017.08.029
- Knobloch M, Braun SMG, Zurkirchen L et al (2014) Metabolic control of adult neural stem cell activity by Fasn- dependent lipogenesis. Nature 493, 226-230
- Smirnova E, Griparic L, Shurland DL and van der Bliek AM (2001) Dynamin-related protein Drp1 Is required for mitochondrial division in mammalian cells. Mol Biol Cell 12, 2245-2256 https://doi.org/10.1091/mbc.12.8.2245
- Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200 https://doi.org/10.1083/jcb.200211046
- Chen H and Chan DC (2004) Mitochondrial dynamics in mammals. In: Schatten GP, ed. Vol 59. Current topics in developmental biology. Academic Press 59, 119-144
- Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232-247 https://doi.org/10.1016/j.stem.2016.04.015
- Khacho M and Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 247, 47-53 https://doi.org/10.1002/dvdy.24538
- Beckervordersandforth R, Ebert B, Schaffner I et al (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573 e6 https://doi.org/10.1016/j.neuron.2016.12.017
- Alirol E and Martinou JC (2006) Mitochondria and cancer: Is there a morphological connection? Oncogene 25, 4706-4716 https://doi.org/10.1038/sj.onc.1209600
- Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 https://doi.org/10.1016/j.stem.2015.07.013
- Telley L, Govindan S, Prados J et al (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443-1446 https://doi.org/10.1126/science.aad8361
- Fang D, Yan S, Yu Q, Chen D and Yan SS (2016) Mfn2 is required for mitochondrial development and synapse formation in human induced pluripotent stem cells/hiPSC derived cortical neurons. Sci Rep 6, 1-13 https://doi.org/10.1038/s41598-016-0001-8
- Zheng X, Boyer L, Jin M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5, 1-25
- Ebrahimi-Fakhari D, Saffari A, Wahlster L et al (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17, 1053-1070 https://doi.org/10.1016/j.celrep.2016.09.054
- Agostini M, Romeo F, Inoue S et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23, 1502-1514 https://doi.org/10.1038/cdd.2016.36
- Fortelny N, Overall CM, Pavlidis P and Freue GVC (2017) Can we predict protein from mRNA levels? Nature 547, E19-E20 https://doi.org/10.1038/nature22293
- Liu Y, Beyer A and Aebersold R (2016) On the dependency of cellular protein levels on mRNA Abundance. Cell 165, 535-550 https://doi.org/10.1016/j.cell.2016.03.014
- Chen Y and Sheng ZH (2013) Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 202, 351-364 https://doi.org/10.1083/jcb.201302040
- MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 Is a calcium sensor for glutamate receptordependent localization of mitochondria at synapses. Neuron 61, 541-555 https://doi.org/10.1016/j.neuron.2009.01.030
- Nemani N, Carvalho E, Tomar D et al (2018) MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+stress. Cell Rep 23, 1005-1019 https://doi.org/10.1016/j.celrep.2018.03.098
- Kang JS, Tian JH, Pan PY et al (2008) Docking of axonal Mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137-148 https://doi.org/10.1016/j.cell.2007.11.024
- Li Z, Okamoto KI, Hayashi Y and Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887 https://doi.org/10.1016/j.cell.2004.11.003
- Calkins MJ, Manczak M, Mao P, Shirendeb U and Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20, 4515-4529 https://doi.org/10.1093/hmg/ddr381
- Lorenz C, Lesimple P, Bukowiecki R et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20, 659-674 e9 https://doi.org/10.1016/j.stem.2016.12.013
- Zsurka G and Kunz WS (2015) Mitochondrial dysfunction and seizures: The neuronal energy crisis. Lancet Neurol 14, 956-966 https://doi.org/10.1016/S1474-4422(15)00148-9
- Martin MA, Blazquez A, Gutierrez-Solana LG et al (2005) Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 62, 659-661 https://doi.org/10.1001/archneur.62.4.659
- Marin SE, Mesterman R, Robinson B, Rodenburg RJ, Smeitink J and Tarnopolsky MA (2013) Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2. Gene 516, 162-167 https://doi.org/10.1016/j.gene.2012.12.024
- Distelmaier F and Koopman WJH, van den Heuvel LP et al (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132, 833-842
- Saneto R and Ruhoy I (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7, 221-234
- DiMauro S, Tanji K and Schon EA (2012) The many clinical faces of cytochrome c oxidase deficiency. In: Kadenbach B, ed. mitochondrial oxidative phosphorylation: nuclear-encoded genes, enzyme regulation, and pathophysiology. New York, NY: Springer New York Cahpter 14, 341-357
- Kriaucionis S, Paterson A, Curtis J, Guy J, MacLeod N and Bird A (2006) Gene Expression Analysis Exposes mitochondrial abnormalities in a mouse model of rett syndrome. Mol Cell Biol 26, 5033-5042 https://doi.org/10.1128/MCB.01665-05
- Gibson JH, Slobedman B, KN H et al (2010) Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 11, 53 https://doi.org/10.1186/1471-2202-11-53
- Pecorelli A, Leoni G, Cervellati F et al (2013) Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of rett syndrome patients. Mediators Inflamm 2013, 137629
- Su D, Cha YM and West AE (2012) Mutation of Mecp2 alters transcriptional regulation of select immediate-early genes. Epigenetics 7, 146-154 https://doi.org/10.4161/epi.7.2.18907
- Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224-1229 https://doi.org/10.1126/science.1153252
- Shulyakova N, Andreazza AC, Mills LR and Eubanks JH (2017) Mitochondrial dysfunction in the pathogenesis of rett syndrome: Implications for mitochondria-targeted therapies. Front Cell Neurosci 11, 58
- Su H, Fan W, Coskun PE et al (2011) Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett 487, 129-133 https://doi.org/10.1016/j.neulet.2009.06.079
- Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L and Bacha A Ben (2017) Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 32, 1983-1997 https://doi.org/10.1007/s11011-017-0085-2
- James SJ, Melnyk S, Fuchs G et al (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89, 425-430 https://doi.org/10.3945/ajcn.2008.26615
- James SJ, Rose S, Melnyk S et al (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23, 2374-2383 https://doi.org/10.1096/fj.08-128926
- Perry SW, Norman JP, Litzburg A and Gelbard HA (2004) Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res 78, 485-492 https://doi.org/10.1002/jnr.20272
- Chugani DC, Sundram BS, Behen M, Lee ML and Moore GJ (1999) Evidence of altered energy metabolism in autistic children. Prog Neuro-Psychopharmacology Biol Psychiatry 23, 635-641 https://doi.org/10.1016/S0278-5846(99)00022-6
- Brennand K, Savas JN, Kim Y et al (2015) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20, 361-368 https://doi.org/10.1038/mp.2014.22
- Maurer I, Zierz S and Moller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48, 125-136 https://doi.org/10.1016/S0920-9964(00)00075-X
- Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9, 684-697 https://doi.org/10.1038/sj.mp.4001511
- Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M and Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68, 694-713 https://doi.org/10.1016/j.neubiorev.2016.06.040
- Mertens J, Wang QW, Kim Y et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95-99 https://doi.org/10.1038/nature15526
- Malik AN and Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481-492 https://doi.org/10.1016/j.mito.2012.10.011
- Budnik LT, Kloth S, Baur X, Preisser AM and Schwarzenbach H (2013) Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides. Hoque MO, ed. PLoS One 8, e64413 https://doi.org/10.1371/journal.pone.0064413
- Kilbaugh TJ, Lvova M, Karlsson M et al (2015) Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. Ai J, ed. PLoS One 10, e0130927 https://doi.org/10.1371/journal.pone.0130927