DOI QR코드

DOI QR Code

Roles of mitochondria in neuronal development

  • Son, Geurim (Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Han, Jinju (Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.09.04
  • Published : 2018.11.30

Abstract

Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria-regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed.

Keywords

References

  1. Lunt SY and Vander Heiden MG (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu Rev Cell Dev Biol 27, 441-464 https://doi.org/10.1146/annurev-cellbio-092910-154237
  2. Kuznetsov AV, Hermann M, Saks V, Hengster P and Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41, 1928-1939 https://doi.org/10.1016/j.biocel.2009.03.007
  3. Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217, 2235-2246 https://doi.org/10.1083/jcb.201803152
  4. Novello F and McLean P (1968) The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J 107, 775-791 https://doi.org/10.1042/bj1070775
  5. Marin-Valencia I, Cho SK, Rakheja D et al (2012) Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed 25, 1177-1186 https://doi.org/10.1002/nbm.2787
  6. Zhang H, Menzies KJ and Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development 145, dev143420 https://doi.org/10.1242/dev.143420
  7. Teslaa T and Teitell MA (2015) Pluripotent stem cell energy metabolism: an update. EMBO J 34, 138-153 https://doi.org/10.15252/embj.201490446
  8. Lees JG, Gardner DK and Harvey AJ (2017) Pluripotent stem cell metabolism and mitochondria: beyond ATP. Stem Cells Int 2017, 2874283
  9. Xu X, Duan S, Yi F, Ocampo A, Liu GH and Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18, 325-332 https://doi.org/10.1016/j.cmet.2013.06.005
  10. Suomalainen A and Battersby BJ (2018) Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19, 77-92 https://doi.org/10.1038/nrm.2017.66
  11. Ott M, Amunts A and Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85, 77-101 https://doi.org/10.1146/annurev-biochem-060815-014334
  12. Roger AJ, Munoz-Gomez SA and Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27, R1177-R1192 https://doi.org/10.1016/j.cub.2017.09.015
  13. Dyall SD, Brown MT and Johnson PJ (2004) Ancient Invasions: From endosymbionts to organelles. Science 304, 253-257 https://doi.org/10.1126/science.1094884
  14. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 https://doi.org/10.1038/290457a0
  15. Lightowlers RN, Rozanska A and Chrzanowska- Lightowlers ZM (2014) Mitochondrial protein synthesis: Figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 588, 2496-2503 https://doi.org/10.1016/j.febslet.2014.05.054
  16. Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471-483 e10 https://doi.org/10.1016/j.cell.2016.09.003
  17. Rampelt H and Pfanner N (2016) Coordination of two genomes by mitochondrial translational plasticity. Cell 167, 308-310 https://doi.org/10.1016/j.cell.2016.09.042
  18. Haynes CM, Yang Y, Blais SP, Neubert TA and Ron D (2010) The Matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37, 529-540 https://doi.org/10.1016/j.molcel.2010.01.015
  19. Larsson NG (2010) Somatic Mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79, 683-706 https://doi.org/10.1146/annurev-biochem-060408-093701
  20. Fox TD (2012) Mitochondrial protein synthesis, import, and assembly. Genetics 192, 1203-1234 https://doi.org/10.1534/genetics.112.141267
  21. Dolezal P, Likic V, Tachezy J and Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313, 314-318
  22. Wiedemann N and Pfanner N (2017) mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86, 685-714 https://doi.org/10.1146/annurev-biochem-060815-014352
  23. Rhee HW, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331 https://doi.org/10.1126/science.1230593
  24. Lee SY, Kang MG, Park JS, Lee G, Ting AY and Rhee HW (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15, 1837-1847 https://doi.org/10.1016/j.celrep.2016.04.064
  25. Lee SY, Kang MG, Shin S et al (2017) Architecture mapping of the inner mitochondrial membrane proteome by chemical tools in live cells. J Am Chem Soc 139, 3651-3662 https://doi.org/10.1021/jacs.6b10418
  26. Han S, Udeshi ND, Deerinck TJ et al (2017) Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem Biol 24, 404-414 https://doi.org/10.1016/j.chembiol.2017.02.002
  27. Hung V, Zou P, Rhee HW et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332-341 https://doi.org/10.1016/j.molcel.2014.06.003
  28. Hung V, Lam SS, Udeshi ND et al (2017) Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. Elife 6, 1-38
  29. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884 https://doi.org/10.1038/nrm3013
  30. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79-99 https://doi.org/10.1146/annurev.cellbio.22.010305.104638
  31. Chen H and Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2, R283-289
  32. Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958-966 https://doi.org/10.1038/ncb1907
  33. Chang DTW, Honick AS and Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26, 7035-7045 https://doi.org/10.1523/JNEUROSCI.1012-06.2006
  34. Fransson A, Ruusala A and Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344, 500-510 https://doi.org/10.1016/j.bbrc.2006.03.163
  35. Calvo SE, Clauser KR and Mootha VK (2016) MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44, D1251-1257 https://doi.org/10.1093/nar/gkv1003
  36. Smith AC and Robinson AJ (2016) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44, D1258-1261 https://doi.org/10.1093/nar/gkv1001
  37. Prokisch H and Ahting U (2007) MitoP2, an integrated database for mitochondrial proteins. Methods Mol Biol 372, 573-586
  38. Cotter D, Guda P, Fahy E and Subramaniam S (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32, D463-467 https://doi.org/10.1093/nar/gkh048
  39. Stiles J and Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20, 327-348 https://doi.org/10.1007/s11065-010-9148-4
  40. Fuentealba LC, Rompani SB, Parraguez JI et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161, 1644-1655 https://doi.org/10.1016/j.cell.2015.05.041
  41. Li G, Fang L, Fernandez G and Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78, 658-672 https://doi.org/10.1016/j.neuron.2013.03.019
  42. Sorrells SF, Paredes MF, Cebrian-Silla A et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377-381 https://doi.org/10.1038/nature25975
  43. Boldrini M, Fulmore CA, Tartt AN et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589-599 https://doi.org/10.1016/j.stem.2018.03.015
  44. Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell 23, 25-30 https://doi.org/10.1016/j.stem.2018.04.004
  45. Beckervordersandforth R, Zhang C and Lie DC (2015) Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb Perspect Biol 7, a018879 https://doi.org/10.1101/cshperspect.a018879
  46. Martynoga B, Drechsel D, Guillemot F et al (2012) Molecular control of neurogenesis : A view from the mammalian cerebral cortex molecular control of neurogenesis : A view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4, a008359
  47. Hirabayashi Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791-2801 https://doi.org/10.1242/dev.01165
  48. Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375 https://doi.org/10.1038/nature04108
  49. Knobloch M, Pilz GA, Ghesquiere B et al (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20, 2144-2155 https://doi.org/10.1016/j.celrep.2017.08.029
  50. Knobloch M, Braun SMG, Zurkirchen L et al (2014) Metabolic control of adult neural stem cell activity by Fasn- dependent lipogenesis. Nature 493, 226-230
  51. Smirnova E, Griparic L, Shurland DL and van der Bliek AM (2001) Dynamin-related protein Drp1 Is required for mitochondrial division in mammalian cells. Mol Biol Cell 12, 2245-2256 https://doi.org/10.1091/mbc.12.8.2245
  52. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200 https://doi.org/10.1083/jcb.200211046
  53. Chen H and Chan DC (2004) Mitochondrial dynamics in mammals. In: Schatten GP, ed. Vol 59. Current topics in developmental biology. Academic Press 59, 119-144
  54. Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232-247 https://doi.org/10.1016/j.stem.2016.04.015
  55. Khacho M and Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 247, 47-53 https://doi.org/10.1002/dvdy.24538
  56. Beckervordersandforth R, Ebert B, Schaffner I et al (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573 e6 https://doi.org/10.1016/j.neuron.2016.12.017
  57. Alirol E and Martinou JC (2006) Mitochondria and cancer: Is there a morphological connection? Oncogene 25, 4706-4716 https://doi.org/10.1038/sj.onc.1209600
  58. Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 https://doi.org/10.1016/j.stem.2015.07.013
  59. Telley L, Govindan S, Prados J et al (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443-1446 https://doi.org/10.1126/science.aad8361
  60. Fang D, Yan S, Yu Q, Chen D and Yan SS (2016) Mfn2 is required for mitochondrial development and synapse formation in human induced pluripotent stem cells/hiPSC derived cortical neurons. Sci Rep 6, 1-13 https://doi.org/10.1038/s41598-016-0001-8
  61. Zheng X, Boyer L, Jin M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5, 1-25
  62. Ebrahimi-Fakhari D, Saffari A, Wahlster L et al (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17, 1053-1070 https://doi.org/10.1016/j.celrep.2016.09.054
  63. Agostini M, Romeo F, Inoue S et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23, 1502-1514 https://doi.org/10.1038/cdd.2016.36
  64. Fortelny N, Overall CM, Pavlidis P and Freue GVC (2017) Can we predict protein from mRNA levels? Nature 547, E19-E20 https://doi.org/10.1038/nature22293
  65. Liu Y, Beyer A and Aebersold R (2016) On the dependency of cellular protein levels on mRNA Abundance. Cell 165, 535-550 https://doi.org/10.1016/j.cell.2016.03.014
  66. Chen Y and Sheng ZH (2013) Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 202, 351-364 https://doi.org/10.1083/jcb.201302040
  67. MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 Is a calcium sensor for glutamate receptordependent localization of mitochondria at synapses. Neuron 61, 541-555 https://doi.org/10.1016/j.neuron.2009.01.030
  68. Nemani N, Carvalho E, Tomar D et al (2018) MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+stress. Cell Rep 23, 1005-1019 https://doi.org/10.1016/j.celrep.2018.03.098
  69. Kang JS, Tian JH, Pan PY et al (2008) Docking of axonal Mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137-148 https://doi.org/10.1016/j.cell.2007.11.024
  70. Li Z, Okamoto KI, Hayashi Y and Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887 https://doi.org/10.1016/j.cell.2004.11.003
  71. Calkins MJ, Manczak M, Mao P, Shirendeb U and Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20, 4515-4529 https://doi.org/10.1093/hmg/ddr381
  72. Lorenz C, Lesimple P, Bukowiecki R et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20, 659-674 e9 https://doi.org/10.1016/j.stem.2016.12.013
  73. Zsurka G and Kunz WS (2015) Mitochondrial dysfunction and seizures: The neuronal energy crisis. Lancet Neurol 14, 956-966 https://doi.org/10.1016/S1474-4422(15)00148-9
  74. Martin MA, Blazquez A, Gutierrez-Solana LG et al (2005) Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 62, 659-661 https://doi.org/10.1001/archneur.62.4.659
  75. Marin SE, Mesterman R, Robinson B, Rodenburg RJ, Smeitink J and Tarnopolsky MA (2013) Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2. Gene 516, 162-167 https://doi.org/10.1016/j.gene.2012.12.024
  76. Distelmaier F and Koopman WJH, van den Heuvel LP et al (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132, 833-842
  77. Saneto R and Ruhoy I (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7, 221-234
  78. DiMauro S, Tanji K and Schon EA (2012) The many clinical faces of cytochrome c oxidase deficiency. In: Kadenbach B, ed. mitochondrial oxidative phosphorylation: nuclear-encoded genes, enzyme regulation, and pathophysiology. New York, NY: Springer New York Cahpter 14, 341-357
  79. Kriaucionis S, Paterson A, Curtis J, Guy J, MacLeod N and Bird A (2006) Gene Expression Analysis Exposes mitochondrial abnormalities in a mouse model of rett syndrome. Mol Cell Biol 26, 5033-5042 https://doi.org/10.1128/MCB.01665-05
  80. Gibson JH, Slobedman B, KN H et al (2010) Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 11, 53 https://doi.org/10.1186/1471-2202-11-53
  81. Pecorelli A, Leoni G, Cervellati F et al (2013) Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of rett syndrome patients. Mediators Inflamm 2013, 137629
  82. Su D, Cha YM and West AE (2012) Mutation of Mecp2 alters transcriptional regulation of select immediate-early genes. Epigenetics 7, 146-154 https://doi.org/10.4161/epi.7.2.18907
  83. Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224-1229 https://doi.org/10.1126/science.1153252
  84. Shulyakova N, Andreazza AC, Mills LR and Eubanks JH (2017) Mitochondrial dysfunction in the pathogenesis of rett syndrome: Implications for mitochondria-targeted therapies. Front Cell Neurosci 11, 58
  85. Su H, Fan W, Coskun PE et al (2011) Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett 487, 129-133 https://doi.org/10.1016/j.neulet.2009.06.079
  86. Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L and Bacha A Ben (2017) Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 32, 1983-1997 https://doi.org/10.1007/s11011-017-0085-2
  87. James SJ, Melnyk S, Fuchs G et al (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89, 425-430 https://doi.org/10.3945/ajcn.2008.26615
  88. James SJ, Rose S, Melnyk S et al (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23, 2374-2383 https://doi.org/10.1096/fj.08-128926
  89. Perry SW, Norman JP, Litzburg A and Gelbard HA (2004) Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res 78, 485-492 https://doi.org/10.1002/jnr.20272
  90. Chugani DC, Sundram BS, Behen M, Lee ML and Moore GJ (1999) Evidence of altered energy metabolism in autistic children. Prog Neuro-Psychopharmacology Biol Psychiatry 23, 635-641 https://doi.org/10.1016/S0278-5846(99)00022-6
  91. Brennand K, Savas JN, Kim Y et al (2015) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20, 361-368 https://doi.org/10.1038/mp.2014.22
  92. Maurer I, Zierz S and Moller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48, 125-136 https://doi.org/10.1016/S0920-9964(00)00075-X
  93. Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9, 684-697 https://doi.org/10.1038/sj.mp.4001511
  94. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M and Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68, 694-713 https://doi.org/10.1016/j.neubiorev.2016.06.040
  95. Mertens J, Wang QW, Kim Y et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95-99 https://doi.org/10.1038/nature15526
  96. Malik AN and Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481-492 https://doi.org/10.1016/j.mito.2012.10.011
  97. Budnik LT, Kloth S, Baur X, Preisser AM and Schwarzenbach H (2013) Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides. Hoque MO, ed. PLoS One 8, e64413 https://doi.org/10.1371/journal.pone.0064413
  98. Kilbaugh TJ, Lvova M, Karlsson M et al (2015) Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. Ai J, ed. PLoS One 10, e0130927 https://doi.org/10.1371/journal.pone.0130927